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Abstract 

 

The observation of a rotational band in a nucleus' spectra is the most straightforward 

method of verifying deformation of a nucleus. The rotational state is the only possibility that can 

occur if the energy of such a state is discovered to be of about 40–50 keV, as is predicted. 

Rotational energy 𝐸𝐼+  in the 𝐼+ state, is related to the moment of inertia 𝒥. The cranking 

approximation is used to estimate a moment of inertia of a nucleus. Shell structure of deformed 

superheavy nuclei is significantly reflected in their rotational properties. 

We employ the self-consistent mean-field approach in our calculations. The Skyrme-

Hartree-Fock-Bogoliubov (HFB) theory is a purely microscopic theory. The study of low-energy 

nuclear excitations along the α-Decay Chains of the heaviest nuclei presents a challenge to nuclear 

theory from a theoretical perspective, and it is an extremely challenging task to study these heaviest 

nuclei experimentally. 

 

Project goals 

 

• To investigate the ground, excited, and isomeric-state masses and energies, and 

deformations of superheavy isotopes of the atomic number larger than 100. 

• To study the characteristics of the potential energy surface (PES) of the presented nuclei.  

• To produce the available experimental data. 

 

Scope of work 

 

In this study, we present an extensive study of nuclear structure and explore the properties 

of isomeric and excited states of super-heavy elements with atomic numbers beyond 100 up to 120 

for a wide range of nuclei with N = 148 to 192.  

Key Goals: 

• Masses and Energies: Calculate ground, excited, and isomeric-state masses and energies. 

• Nuclear Deformations: Investigate deformations corresponding to proposed isotopic states. 

• Shell closures: predicted the shell closures for protons and neutrons in Skyrme HFB 

calculations.  

• Potential energy surface (PES): qualitatively explain the range of spontaneous fission half-

lives observed experimentally and calculate the fission barrier for superheavy nuclei.  



Introduction 

 

The observation of a rotational band in a nucleus' spectra is the most straightforward 

method of verifying deformation of a nucleus. The mainly calculations of the equilibrium 

deformations, energies of the first 2+ states, and the probabilities and observation of 𝞪-decay to 

the first rotational state 2+, in addition to electron transitions, presents to be the more promising 

way to measure the energy of this state for even-even heaviest nuclei in the deformed region. The 

rotational state is the only possibility that can occur if the energy of such a state is discovered to 

be of about 40–50 keV, as is predicted. Equilibrium deformation of a nucleus is calculated by 

minimization of its energy in a multidimensional deformation space. The seven-dimensional space 

𝛽𝜆, 𝜆 = 2,3, … ,8 is taken. where, 𝛽𝜆 are the usual deformation parameters. In calculations of 

moment of inertia of nuclei and to describe the rotational energies, it’s important to use a 

multidimensional deformation space, particularly for heaviest nuclei. There is main role of 

deformations of various multipolarities in the moment of inertia and thus in 𝐸2+. When used a 

multidimensional deformation space the value of the rotational energy decreased.  

The rotational energy 𝐸𝐼+  in the 𝐼+ state, is related to the moment of inertia 𝒥. The cranking 

approximation is used to estimate a moment of inertia of a nucleus. This method provides a good 

description of the ground-state moments of inertia of well-deformed nuclei as well as a very good 

description of the energy of the lowest rotational states of even-even heaviest nuclei, particularly 

those that are the heaviest or most strongly deformed, as fission isomers are. Through the 

weakening of pairing correlations, to which moments of inertia are highly sensitive, the energy 

gaps (closed shells or subshells) affect the values of moments of inertia and consequently of the 

first excited state 𝐸2+ of nuclei [1]. Shell structure of deformed superheavy nuclei is significantly 

reflected in their rotational properties. In particular, nuclei with closed deformed shells have the 

lowest rotational energy 𝐸2+and the moment of inertia is highest (i.e., moving in the direction to 

its rigid body limit) where the mechanism is that pairing correlations are weakened at closed shells. 

For an exact description of rotational energies (moments of inertia) of the heaviest nuclei, a 

sufficiently large deformation space is required. In order to identify shell or subshell closures in 

the SHN region, the excitation energy 𝐸2+of the first excited 2+ states, is used for this purpose. 

The study of low-energy nuclear excitations along the α-Decay Chains of the heaviest nuclei 

presents a challenge to nuclear theory from a theoretical perspective, and it is an extremely 

challenging task to study these heaviest nuclei experimentally. A lot of effort is currently being 

put into this showcase of nuclear physics research. Advanced experimental techniques have 

already made it possible to discover the first nuclear structure information beyond the global 

properties such as α-decay half-lives and 𝑄𝛼-values [2,3]. Specialized new facilities in the future 

are expected to enable the development of more detailed investigations of the nuclear structure for 

the already synthesized isotopes, in addition to facilitating the search for new elements with even 

higher Z. 

 



The properties of the SHEs have been examined in a variety of nuclear models 

simultaneously with the experimental efforts made in the experimental improvements. It is 

extremely challenging for any theoretical model to accurately describe of trans-fermium nuclei. 

Nowadays, nuclear physics is very interested in the structure and stability of these nuclei. The 

main reason for the existence and stability of these heaviest nuclei is achieved by the shell effects. 

The synthesis of superheavy nuclei (SHN) is progressing rapidly. It has been theoretically 

predicted that these nuclei will have two regions: one around the spherical doubly magic nucleus  

𝐹𝑙114
298  and the other around deformed nuclei with Z=108–110 and N=162–164. Based on a 

thorough examination of the ground-state energy and single-particle spectra of these nuclei in a 

multidimensional deformation space [4], it has been determined that 𝐻𝑠108
270  represents a doubly 

magic deformed nucleus. Compared to spherical SHN, the region of deformed SHN seems to be 

closer to experimentally investigated nuclei and the nuclei that are close to its center ( 𝐻𝑠108
270 ) were 

also easier to reach them easily from other nuclei. Therefore, one approach to solving the issue of 

experimental confirmation of deformed shapes of superheavy nuclei located in the neighborhood 

of 𝐻𝑠108
270  is the measurement of the energy 𝐸2+  of the lowest 2+ state in even-even species of the 

nuclei. For superheavy nuclei, however, the probability of observing such a band is limited due to 

the extremely low cross sections required for their synthesis. We are interested in confirming our 

calculations for nuclei for which these energies have been observed before estimating the rotational 

energies 𝐸2+ for superheavy nuclei. Currently, 𝐹𝑚100
254,256

 [5] is the heaviest nuclei for which such 

bands have been detected, and very recently, 𝑁𝑜102
252,254

 [6] has also been observed to have a 

rotational band. The detection of two near lines in the 𝞪-decay spectrum of 𝑆𝑔106
260  [7] provided an 

indication of the energy of the lowest rotational state 2+ for deformation of the nucleus 𝑅𝑓104
256  [8]. 

We employ the self-consistent mean-field approach in our calculations. The Skyrme-

Hartree-Fock-Bogoliubov (HFB) theory is a purely microscopic theory that is an ideal tool for the 

analysis of and provides an improved estimation of the Q-values of α-decay, the predominant 

decay mode of SHEs, in many cases [9]. Furthermore, all possible shapes of a nucleus are 

considered in the minimization process in the self-consistent calculations. We present results for 

the heavier even-even nuclei around the region of the well-known fermium (Fm, Z = 100) up to 

SHEs and include this region of the (Fm, Z = 100) element in our analysis to compare our 

predictions with the available experimental data. These nuclei currently reside at the center of the 

spotlight for SHE experiments. The principal motivation behind these investigations is to provide 

reliable experimental anchor points for nuclear structure theory in the heavy and superheavy 

nuclei, as well as to obtain a way to decay schemes that are significant to nuclear structure physics. 

where the experiment does not clearly show whether the decay occurs between the ground states 

of the parent and daughter nuclei. As a result, estimating the first excited states 𝐸2+ of the two 

participating nuclei is crucial. Knowing an approximate analysis of the spectra of both nuclei 

involved in the α-decay could be beneficial in the interpretation of the experimental data. We are 

excited to investigate the isomeric and low-lying excited states of heavy and superheavy isotopes 

in order to contribute to the knowledge of the spectra of these isotopes. 
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Fig. (1.g) 

 

Fig. (1.h) 
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Fig. (1.j) 

 

Fig. (1.k) 

 

 

Fig. (1): The mass excess as a function of the 
neutron number (N) for: (a) Fm126−230                  
(b) No130−236     (c) Rf134−234       (d) Sg138−232   
(e) Hs142−230      (f) Ds146−228              (g)  Cn150−226   
(h) Fl 156−224                      (i) Lv 160−222                                                  
(j)  Og 164−220     (k) 120 168−218. 
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Fig. (2.a) 
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Fig. (2.g) 

 

Fig. (2.h) 

 

Fig. (2.i) 
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Fig. (2.k) 

 

 

Fig. (2): The quadrupole deformation 𝛽2 as a 
function of the neutron number (N) for:               
(a) Fm126−230                  (b) No130−236                              
(c) Rf134−234       (d) Sg138−232   (e) Hs142−230        
(f) Ds146−228              (g)  Cn150−226   (h) Fl 156−224                                                
(i) Lv 160−222                                                  (j)  Og 164−220     
(k) 120 168−218. 
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Fig. (3.a) 
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Fig. (3.g) 
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Fig. (3.k) 

 

Fig. (3): The energy 𝐸2+of the first rotational 
state 2+ as a function of the neutron number 
(N) for: (a) Fm126−230                  (b) No130−236                              
(c) Rf134−234       (d) Sg138−232   (e) Hs142−230        
(f) Ds146−228              (g)  Cn150−226   (h) Fl 156−224                                                
(i) Lv 160−222                                                  (j)  Og 164−220     
(k) 120 168−218. 
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Fig. (4.a) 
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Fig. (4.h) 

 

Fig. (4): The quadrupole deformation 𝛽2 as a 
function of the atomic number (Z) at constant 
neutron number for: (a) N = 168 (b) N = 170 
(c) N = 172 (d) N = 174 (e) N = 176 (f) N =

178 (g) N = 180 (h) N = 182. 
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Figures 

 
Fig. (5): The quadrupole deformation 
parameter (.𝛽2), obtained from the present 
Mm(SLy4), for 270 − 314120 isotopes as 
functions of mass number (A). The results 
based on the FRDM and FRLDM [11] 
calculations are added for comparison. Open 
green squares in panel (b) Represent  𝛽2 
values for the second lowest minima in the 
total energy surface obtained from Mm(SLy4) 
calculations.  

 



Discussion 

 

Figures 1 (a-k) show the mass excess as a function of neutron number (N) for isotopes of 

Z = 100 to Z = 120. Figure (1) also displays the corresponding values of mass excess as calculated 

using the Skyrme Hartree-Fock-Bogoliubov (HFB) theory, which is a purely microscopic theory 

as the self-consistent mean-field approach, and the calculations of Kowal are based on 

microscopic-macroscopic method with the deformed Woods–Saxon single-particle potential and 

the Yukawa-plus-exponential macroscopic energy taken as the smooth part., for comparison. It's 

evident in fig. (1.a) that the two methods agree in estimating the mass excess in terms of the general 

trend of variation with neutron number (N) and, of course, also agree in estimating the total binding 

energy. For all Z = 100-120, It's noticeable that the relative differences between the values of mass 

excess. deduced from the two methods increase with increasing the neutron number (N). The 

calculations of the present Skyrme HFB calculations estimate a little larger mass excess relative to 

the microscopic-macroscopic method (Kowal) calculations. 

In addition to the values of 𝛽2 corresponding to the lowest minima of total energy of the 

investigated isotopes according to the Skyrme Hartree-Fock-Bogoliubov (HFB), microscopic-

macroscopic (Kowal), and FRDM (M𝑜̈ller) methods, we add in figures 2(a-k). The predictions 

three calculations for 𝛽2 are consistent for isotopes of Z = 100 to 120. Also, the shapes of the 

nuclei, whether spherical (𝛽2 = 0), prolate (𝛽2 > 0), or oblate (𝛽2 < 0). We noticed that mostly 

the isotopes have prolate shapes, and there are five even-even isotopes for Z = 100-104, 120 and 

two or three even-even isotopes for Z = 106-110, 116,118, and just one even-even isotope for Z = 

112, 114 oblate shapes. 

In most isotopes of Z = 100-120, there is agreement in the predictions of Skyrme HFB 

calculations, microscopic-macroscopic (Kowal), and FRDM (M𝑜̈ller) calculations for 𝛽2. while 

there are regions of agreement between the three methods in Z = 100-106, 110-112, and 116, but 

in contrast, the nuclei with N = 188, 190 have spherical shapes predicted by Skyrme HFB 

calculations, and they show prolate nuclear shapes based on microscopic-macroscopic (Kowal), 

and FRDM (M𝑜̈ller) calculations. But these 306𝐿𝑣, 308𝑂𝑔 isotopes show spherical shapes also in 

calculations of microscopic-macroscopic (Kowal). Also, in contrast to the oblate shapes predicted 

by Skyrme HFB and microscopic-macroscopic (Kowal) calculations for these 272, 274𝐹𝑚, 

274,276,278𝑁𝑜, 278,280𝑅𝑓  isotopes, they show prolate shapes based on the FRDM (M𝑜̈ller). In 

these 292𝐹𝑚, 294𝑁𝑜, 296𝑅𝑓  isotopes the value of 𝛽2 in M𝑎̈ller calculation is more prolate than 

in the Skyrme HFB and microscopic-macroscopic (Kowal) calculations. And also, in contrast to 

the spherical shape predicted by Skyrme HFB and microscopic-macroscopic (Kowal) calculations 

for this 298𝐻𝑠  isotope, it has an oblate shape based on FRDM (M𝑜̈ller) calculations. And this 

290𝐶𝑛 isotope has a spherical shape in FRDM (M𝑜̈ller) calculations, in contrast to the oblate shape 

predicted by Skyrme HFB and microscopic-macroscopic (Kowal) calculations. In most isotopes 

of Z = 114, 116 and 118, there is agreement in the predictions of Skyrme HFB calculations, and 

microscopic-macroscopic (Kowal) calculations for 𝛽2. But these 286𝐹𝑙 286, 288, 290𝐿𝑣 

286, 288, 280𝑂𝑔, isotopes have a prolate shape in Skyrme HFB and FRDM (M𝑜̈ller) calculations, 

in contrast to the oblate shape predicted by microscopic-macroscopic (Kowal) calculations. In all 



isotopes of Z = 120 there is agreement in the predictions of three methods, but this 308120  isotope 

shows spherical nuclear shapes based on Skyrme HFB and microscopic-macroscopic (Kowal) in 

contrast to the oblate shape predicted by FRDM (M𝑜̈ller) calculations. Also, we noticed that the 

switch in shape from prolate to oblate nuclear shape can occur at N = 170, 172, 176, 174 of the 

isotopes of Z = 100-102, 104, 106-112, 114-118, respectively. 

The energy 𝐸2+ of the first rotational state 2+ as a function of the neutron number (N) 

calculated for a wide region of nuclei with Z = 100-120 and N = 140-192 using the Skyrme Hartree-

Fock-Bogoliubov (HFB) theory is shown in figure (4). Figures 4(a-k) also show the calculations 

from two different methods using to calculate the ground-state moments of inertia then calculate 

the energy 𝐸2+ of the first rotational state 2+, the two methods are generator coordinate method 

(GCM) and adiabatic time-dependent Hartree-Fock-Bogolyubov (ATDHFB) approximation. In 

the case of GCM, the calculation is performed using the local approximation of the Gaussian 

overlap approximation (GOA), while in case of the ATDHFB theory, we use the perturbative 

cranking approximation. One can see those two minima of 𝐸2+ are obtained for the considered 

nuclei corresponding to N = 152, and 162. The more important reason for these minima is the 

exceptional shell structure of the nuclei studied, or more particularly, the appearance of strong 

deformed shells closed at N =162 and weaker shell closed at N = 152. Because the energy gaps 

(closed shells or subshells) influence the values of moments of inertia and thus of 𝐸2+ of nuclei 

so, the shell closures at N = 152 and 162 leads to large values of the moment of inertia and this 

way to small values of 𝐸2+. And we can see clearly, in figures (4) the dependence of 𝐸2+ on neutron 

number N around the shell closures at N = 152 and 162. Also, we noticed that at the neutron number 

N = 184, the values of 𝐸2+ are very large where N = 184 is spherical shell closure.  

Figures 4(a-h) show 𝛽2 corresponding to the lowest minima of total energy of the 

investigated isotopes according to the Skyrme Hartree-Fock-Bogoliubov (HFB), microscopic-

macroscopic (Kowal), and FRDM (M𝑎̈ller) methods as a function of proton number (Z) at constant 

neutron number (N = 168, 170, 172, 174, 176, 178, 180, and 182). We added these figures to 

illustrate the shell closure for protons and neutrons. We observed clearly that, for neutrons, N = 

184 and 182 are spherical shell closure, and for protons, Z = 114 maybe is spherical shell closure 

also and it has appeared in figures 4(f-h).  

We can focus on quadrupole deformation beta for Z = 120 and give a comparison between 

our presented calculations based on Skyrme HFB calculations and our calculations in my MSC 

[12] based on the macro-micro model, is shown in figure (5). In addition to the values of 𝛽2 

corresponding to the main lowest minima of the ground state energy of the investigated isotopes 

according to the Mm(SLy4) and FRDM methods of calculation, we add in Fig.(5), the values of 

𝛽2 (open green squares) corresponding to the second lowest minima in the total energy surface 

based on the present Mm(SLy4) calculations, when appeared. The total energy difference between 

the first and second minima for the modes presented in Fig. (5) is less than 4.0 MeV, which is 

averagely less than 0.02% of the total energy and less than 0.015MeV of the corresponding energy 

per nucleon. The Mm (SLy4) calculations predict the 270 − 280, 282120 isotopes to be of prolate 

shape, and the three 281,283,284120 to be spherical. The heavier Z = 120 isotopes turn out to be 

of oblate shape (up to A = 299 and A = 313, 314) or again spherical. The range of 𝛽2 is deduced 



based on the Mm (SLy4) calculations as −0.145 ≤ 𝛽2 ≤ 0.215 throughout the study domain. On the 

other hand, the FRDM method estimates oblate shape of extreme large negative values of 𝛽2, up 

to 𝛽2 = −0.426, for the 307 − 314120 isotopes. The predictions of the two presented methods for 

the ground state 𝛽2 deformation are consistent for isotopes with mass numbers A ≤ 290 and A = 

298–306. In contrast to the oblate shape predicted by the Mm (SLy4) calculations, the 

291 − 296120 isotopes show prolate nuclear shapes based on the FRDM calculations. It is worth 

noting that these isotopes that did not show agreement in the ground state 𝛽2 deformation based 

on the FRDM calculations with that of the Mm (SLy4) calculations show agreement with its 𝛽2 of 

their second lowest minima. The total energy difference between the two minima for these isotopes 

is less than 0.5 MeV, except for 295120 with a difference of about 8 MeV. The two methods confirm 

the spherical shape to the isotopes of A = 300–306, around the neutron shell closure of N = 184. 

 

Theory 

 

One of the successful codes that can be used to perform HFB calculations is HFBTHO 

(V4.0) [13]. The HFB method can be used to predict the structure of nucleus. In this method we 

can implement the energy density function (EDF) approach to calculate the different properties of 

atomic nuclei. The energy density function can be derived based on the zero-range Skyrme or the 

finite-range Gogny effective nucleon interaction, where the energy of the nucleus is obtained by 

integration over space of some phenomenological energy density, which is itself a functional of 

the neutron and proton intrinsic densities. The HFBTHO (V4.0) program uses the axial harmonic 

oscillator (HO) or transformed harmonic oscillator (THO) single-particle basis to expand 

quasiparticle wave functions. The program can be used in a variety of applications, including 

systematic studies of wide ranges of nuclei, both spherical and axially deformed, extending all the 

way out to nucleon drip lines. The inertia tensor that enters the kinetic energy term of the collective 

Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes 

the response of the system to small changes in the collective variables. For this reason, the two 

main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and 

the generator coordinate method. Fission can then be viewed as a process during which the 

deformation becomes so large that two separate fragments appear. This viewpoint can be 

formalized by introducing a set of collective variables that represent the motion of the nucleus as 

a whole and control the fission process. The characteristics of the resulting potential energy surface 

(PES), i.e. the energy as a function of the chosen collective variables, determines fission properties. 

For example, differences in the characteristics of potential energy barriers of nuclei qualitatively 

explain the range of spontaneous fission half-lives observed experimentally. In neutron-induced 

fission, the time ‘from saddle to scission’, which is the time it takes for the nucleus to go from the 

top of the highest barrier to a configuration with two separated fragments, is also strongly 

dependent on the characteristics of the PES. In the adiabatic approximation, it is further assumed 

that there is a perfect decoupling between the motion in collective space and the intrinsic motion 

of individual nucleons. In a phenomenological picture of fission, the collective inertia B can be 

introduced when the dynamics is assumed to be restricted to a path in the manifold of collective 



variables with the associated classical action. In nuclear physics, the notion of collective inertia 

also arises naturally in theories of large amplitude collective motion such as the generator 

coordinate method (GCM) or the adiabatic time-dependent Hartree–Fock–Bogoliubov (ATDHFB) 

theory. Therefore, these general approaches to the quantum many-body problem provide rigorous 

methods to compute the collective inertia needed in fission. The collective inertia tensor is a 

function of the collective variables and depends sensitively on both the shell structure and pairing 

correlations. 

The full description of nuclear density distributions requires the definition of the radial 

dependence (which describes the size and diffused edge of the distribution), and the angular 

dependence (which describes the nuclear shape and deformations). For microscopic calculations, 

density is the sum of single particle densities.  

𝜌𝑖(𝒓) =∑|𝜑𝑖(𝒓)|
2

𝑖

 

Index 𝑖 labels the neutron (𝑖 = n) or proton (𝑖 = p). The problem of nuclear structure is a many-

body problem. Since it’s a complicated problem. In the mean-field models, the totality of the 

interactions acting on a nucleon is an average potential is approximated. In such average potential 

a nucleon moves independently from the other constituents of the system. These models 

concentrate on self-consistent determination of the nuclear mean-field (SCMF), i.e., (HF) method 

and its generalizations (HFB). For this purpose, effective interactions are employed. This concept 

is closely related to energy-density-functional (EDF) theory in electronic systems. According to 

this model, nucleons can move in average potential independently from each other, so the problem 

of the Hartree-Fock method is how to extract a single-particle potential out of the sum of two-body 

interactions.  

𝑉(1, … . , 𝐴) =
1

2
∑𝑉(𝑟𝑖, 𝑟𝑗,)

𝐴

𝑖≠𝑗

 

Single-particle potential can be derived by a variational principle using the Slater 

determinants as wave functions. The variational principle solves in approximated way the 

eigenvalue problem of the exact Schr𝑜̈dinger equation  

𝐻̂|𝛹⟩ = 𝐸|𝛹⟩          eq. 1 

This approach is useful for solving many-body problems, and it’s used not only in Hartree-Fock 

method, but also in other important theories in nuclear physics like the Bardeen-Cooper-Schrieffier 

(BCS) theory, for pairing interaction. HF-theory tries to give a microscopic explanation to the 

existence of a nuclear mean-field. It starts from a many body Hamiltonian which a two-body 

interaction between nucleons  

𝐻̂ = 𝑇̂ + 𝑉 =
−ℎ2

2𝑚
∑ 𝛻𝑖

2 𝑖 +
1

2
∑ 𝑉(𝑖, 𝑗)𝑖≠𝑗         eq. 2 

The purpose of the HF method is resolving an eigenvalue problem in which the total wave function 

has the form of the totally anti-symmetric product of single-particle wave functions 𝜑𝑖, this total 

wave function is determined by the slater determinant:  



𝛹(𝑟1, … . . , 𝑟𝐴) =
1

√𝐴!
[
𝜑1(𝑟1) ⋯ 𝜑1(𝑟𝐴)

⋮ ⋱ ⋮
𝜑𝐴(𝑟1) ⋯ 𝜑𝐴(𝑟𝐴)

]            eq. 3 

In order to find the minimum of the energy functional, now the variational principle to the 

eigenvalue problem eq. 1 has to be applied, where the Hamiltonian is expressed in eq. 2. Before 

applying the variational principle it’s important to add a Lagrange multiplier. The solution of the 

Hartree-Fock equations must be found in an iterative way. 

1. One starts by choosing a specific potential (like a Saxon-Woods potential or the harmonic 

oscillator potential) to be applied to the equation of Schr𝑜̈dinger equation and find a wave 

function. 

2. Then this first wave function has to be put again in the equations of Schr𝑜̈dinger equation.  

3. And a new potential will be obtained.  

4. Then Hartree-Fock equations can be solved by repeating several times this procedure until 

convergence.  

 

In order to generalize the Hartree-Fock equations, the single-particle wave function can be 

generalized by making they depend on spin and isospin coordinates  

𝜑𝑖(𝑟) → 𝜑𝑖(𝑟, 𝜎⃗,  𝑞𝑖) 

Where q stays for the nucleon charge. In the HF approach only take the particle-hole 

interaction into account, where there is a clear difference between occupied and unoccupied state. 

This leads to a successful approximation in nuclei with closed shell, but for most nuclei, one also 

needs to consider the particle-particle or pairing interaction. For these nuclei, the mean field 

without taking pairing correlations into consideration doesn’t perform well. Therefore, the HFB 

method is introduced to solve this problem for the mean field. Hartree-Fock-Bogolyubov theory 

generalizes and unifies the simple HF method and the BCS model. The Hamiltonian reduces to 

two average potentials a self-consistent field, which is known from the pure HF theory and the 

additional pairing potential, known from the BCS model. The HFB equations constitute a set of 

non-linear equations to be solved using a self-consistent loop similar to that presented in the case 

of the HF method. A two-body Hamiltonian of a system of fermions can be expressed in terms of 

a set of annihilation and creation operators (𝑐,  𝑐†)  



𝐻 = ∑ 𝑒𝑛1𝑛2𝑐𝑛1
† 𝑐𝑛2 +

1

4
∑ 𝜈̅𝑛1𝑛2𝑛3𝑛4𝑛1𝑛2𝑛3𝑛4𝑛1𝑛2 𝑐𝑛1

† 𝑐𝑛2
† 𝑐𝑛4𝑐𝑛3   eq. 4 

Where 𝑒𝑛1𝑛2and 𝜈̅𝑛1𝑛2𝑛3𝑛4are matrix elements of the kinetic energy operator and anti-symmetrized 

two-body interaction matrix elements, respectively. The basis of HFB method is the concept of 

Bogolyubov quasi-particles, that are defined through the so called Bogolyubov transformation. In 

the HFB method, the ground-state wave function |𝛷⟩ is defined as the quasiparticle vacuum 

𝛼𝑘|𝛷⟩ = 0, where the quasiparticle operators (𝛼,  𝛼†) are connected to the original particle 

operators via linear Bogolyubov transformation, 

𝛼𝑘 =∑(𝑈𝑛𝑘
∗ 𝑐𝑛 + 𝑉𝑛𝑘

∗ 𝑐𝑛
†),                  

𝑛

𝛼𝑘
† = ∑(𝑉𝑛𝑘𝑐𝑛 + 𝑈𝑛𝑘𝑐𝑛

†)  

𝑛

 

Where 𝑈𝑛𝑘 and 𝑉𝑛𝑘 are two transformation matrices. The indices (𝑘) is run over the whole 

configuration space. Which can be rewritten in the matrix form as  

(
𝛼
𝛼†) = (𝑈

† 𝑉†

𝑉𝑇 𝑈𝑇) (
𝑐
𝑐†
) 

Where 𝑈 𝑎𝑛𝑑 𝑉 are the coefficients that transform the single-particle states (𝑖) into quasiparticle 

state (𝑛). In terms of the normal 𝜌 and pairing 𝜌̃ one-body density matrices, defined as  

𝜌𝑛𝑛` = ⟨𝛷|𝑐
𝑛`
†  𝑐𝑛|𝛷⟩ = (𝑉∗𝑉𝑇)𝑛𝑛`             , 𝜌̃𝑛𝑛` = ⟨𝛷|𝑐𝑛`  𝑐𝑛|𝛷⟩ = (𝑉∗𝑈𝑇)𝑛𝑛`  

The expectation value of the Hamiltonian eq. 4 is expressed as an energy functional  

𝐸[𝜌,  𝑘] =
⟨𝛷|𝐻|𝛷⟩

⟨𝛷|𝛷⟩
      eq. 5 

The single particle-hole (Hartree-Fock (𝛤)) and particle-particle (pairing (∆)) mean-fields have to 

be computed from (𝜌 𝑎𝑛𝑑 𝜌̃) and quasi-particle Hamiltonian matrix 𝐻 can be diagonalized and the 

resulting eigenvectors are used as inputs for the subsequent iteration. Variation of energy eq. 5 with 

respect to (𝜌 𝑎𝑛𝑑 𝜌̃) results in the HFB equations  

(
𝑒 + 𝛤 − 𝜆 ∆

−∆∗ −(𝑒 + 𝛤)∗ + 𝜆
) (

𝑈
𝑉
) = 𝐸 (

𝑈
𝑉
)       eq. 6 

Where the Lagrange multiplier 𝜆 has been introduced to fix the correct average particle number. 

Nuclear density functional theory (DFT) is one of the most reliable methods for calculating 

properties of nuclei within the whole nuclear mass chart. DFT is based on the idea that there exists 

a universal nuclear energy density functional (UNEDF) which represents the total energy of the 

system as a functional 𝐸[𝜌, 𝜌̃], of the normal 𝜌 and pairing 𝜌̃ one-body density matrices. Initially, 

attempts to build a UNEDF were rooted in the zero-range Skyrme interaction treated within the 

HF or HFB approximation. For Skyrme forces, the HFB energy has the form of a local energy 

density functional, the energy is expressed as the integral of energy density functional, 

𝐸[𝜌, 𝜌̃] = ∫ℋ(𝒓) 𝑑𝒓 .          eq. 7 

The energy density functional ℋ is the sum of the mean-field and pairing energy densities, 

ℋ(𝒓) = 𝐻(𝒓) + 𝐻(𝒓).       eq. 8 



Where 𝐻(𝒓) 𝑎𝑛𝑑 𝐻̃(𝒓) depend on the particle local density 𝜌(𝒓),  pairing local density 𝜌̃(𝒓), 

kinetic energy density 𝜏(𝒓),  and spin-current density 𝑱𝑖𝑗(𝒓). 

Variation of energy eq. 7 with respect to 𝜌 𝑎𝑛𝑑 𝜌`(spin-dependent one-body density matrices) 

results in the Skyrme HFB equations  

∑ (
ℎ(𝒓, 𝜎, 𝜎 `) ℎ̃(𝒓, 𝜎, 𝜎 `)

ℎ̃(𝒓, 𝜎, 𝜎 `) −ℎ(𝒓, 𝜎, 𝜎 `)
)𝜎` (

𝑈(𝐸, 𝒓𝜎 `)

𝑉(𝐸, 𝒓𝜎 `)
) = (

𝐸 + 𝜆 0
0 𝐸 − 𝜆

) (
𝑈(𝐸, 𝒓𝜎)
𝑉(𝐸, 𝒓𝜎)

)       eq. 9 

In the present implementation, we make the restriction to Axially-symmetric, Time-reversal-

symmetric, and Reflection-symmetric shapes in order to obtain HFB solutions within a much 

shorter CPU time. Therefore, quasi-particle HFB states can be written in the following form 

(
𝑈𝑘(𝒓, 𝜎, 𝜏)
𝑉𝑘(𝒓, 𝜎, 𝜏)

) = 𝜒𝑞𝑘(𝜏)[(
𝑈𝑘
+(𝑟, 𝑧)

𝑉𝑘
+(𝑟, 𝑧)

) 𝑒𝑖𝛬
−𝜑𝜒

+
1

2

(𝜎) + (
𝑈𝑘
−(𝑟, 𝑧)

𝑉𝑘
−(𝑟, 𝑧)

) 𝑒𝑖𝛬
+𝜑𝜒

−
1

2

(𝜎)]        eq. 10 

The solution of the HFB eq. 9 is obtained by expanding the quasi-particle function of eq. 10 in a 

given complete set of basis wave functions that conserve axial symmetry and parity. The program 

HFBTHO is able to do so far the two basis sets of wave functions (HO and THO). The HO set 

consists of eigenfunctions of a single-particle Hamiltonian for an axially deformed harmonic 

oscillator potential. By using the standard oscillator constants  

𝛽𝑧 =
1

𝑏𝑧
= (

𝑚𝑤𝑧

ℏ
)1/2,           𝛽┴ =

1

𝑏┴
= (

𝑚𝑤┴

ℏ
)1/2 

The HO eigenfunctions are written explicitly as  

𝛷𝛼(𝒓,  𝜎) = 𝜓𝑛𝑟
𝛬 (𝑟)𝜓𝑛𝑧

(𝑧)
𝑒𝑖𝛬𝜑

√2𝜋
𝜒𝛴(𝜎)         eq. 11 

The set of quantum numbers 𝛼 = {𝑛𝑟 , 𝑛𝑧 , 𝛬, 𝛴} includes the numbers of nodes, 𝑛𝑟 and 𝑛𝑧, in the r 

and z directions, respectively and the projections on the z-axis, 𝛬 𝑎𝑛𝑑 𝛴, of the angular momentum 

operator and the spin. The THO set of basis wave functions consists of transformed harmonic 

oscillator functions, which are generated by applying the local scale transformation (LST) to the 

HO single-particle wave functions, which transforms the incorrect Gaussian asymptotic behavior 

of deformed HO wave functions into the correct exponential form. In the axially deformed case, 

the LST acts only on the cylindrical coordinates r and z  

𝑟 → 𝑟′ ≡ 𝑟′(𝑟,  𝑧) = 𝑟 
𝑓(𝑅)

𝑅
, 

𝑧 → 𝑧′ ≡ 𝑧′(𝑟,  𝑧) = 𝑧 
𝑓(𝑅)

𝑅
, 

And the resulting THO wave functions read 

𝛷𝛼(𝒓,  𝜎) = √
𝑓2(𝑅)

𝑅2

𝜕𝑓(𝑅)

𝜕𝑅
𝜓𝑛𝑟
𝛬 (𝑟 

𝑓(𝑅)

𝑅
)𝜓𝑛𝑧 (𝑧 

𝑓(𝑅)

𝑅
)
𝑒𝑖𝛬𝜑

√2𝜋
𝜒𝛴(𝜎)         eq. 12 

Where 𝑅 = √
𝑧2

𝑏𝑧
2 +

𝑟2

𝑏┴
2  , and 𝑓(𝑅) is a scaler LST function. 
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