

JOINT INSTITUTE FOR NUCLEAR RESEARCH
Meshcheryakov Laboratory of Information Technologies

FINAL REPORT ON THE

START PROGRAMME

Gaudi Hive for SPD

Supervisor:
Dr. Danila Oleynik

Student:
Alexey Yastrebov, Belarus
Sukhoi State Technical
University of Gomel

Participation period:
July 08 – August 16,
Summer Session 2024

Dubna, 2024

2

TABLE OF CONTENTS

Abstract………………………………………………………………………. 3

Introduction…………………………………………………………………... 4

About Gaudi …….…………………………………………………………… 4

Gaudi Hive …………………………………………………………………... 6

Job Options Python script for using Gaudi Hive……………………………… 9

Algorithms pipelines and branches in Job Options Python script…………… 10

Setting inputs and outputs of Gaudi Algorithm ………………………………. 11

Conclusion…………………………………………………………………… 13

References……………………………………………………………………. 14

Acknowledgments…………………………………………………………… 15

3

ABSTRACT

Like any large experiment, SDP involves the development of its own applied

software for data processing and analysis. To settle common practices and method-

ology of development a special framework should be used. One such framework is

Gaudi. It is a framework software package that is used to build data processing ap-

plications for High-Energy Physics experiments. Gaudi contains all of the compo-

nents and interfaces which allows build event data processing applications for your

experiment. Of particular interest is Gaudi Hive – extension to Gaudi with multi-

threading support.

This work describes about:

– Gaudi and Gaudi Hive architecture and their main components;

– Gaudi Hive features like parallel event processing and algorithms executing,

automatic composing correct sequence of algorithms execution;

– writing Job Options via Python script;

– building algorithms pipelines and branches in Job Options Python script.

4

INTRODUCTION

The Spin Physics Detector, a universal facility for studying the nucleon spin

structure and other spin-related phenomena with polarized proton and deuteron

beams, is proposed to be placed in one of the two interaction points of the NICA

collider that is under construction at the Joint Institute for Nuclear Research (Dubna,

Russia) [1]. At the heart of the project is extensive experience with polarized beams

at JINR. The main objective of the proposed experiment is the comprehensive study

of the unpolarized and polarized gluon content of the nucleon. Spin measurements

at the Spin Physics Detector at the NICA collider will make a unique contribution

and will challenge our understanding of the spin structure of the nucleon.

Due to the difficulties encountered in constructing a hardware trigger, a trig-

gerless data acquisition system is assumed for SPD [2]. Together with the high col-

lision frequency (up to 12 MHz) and hundreds of thousands of detector channels,

this presents a challenge to design an efficient data acquisition and processing sys-

tem.

There are two systems for data acquisition and processing are developing to-

day for SPD: online and offline filter. The online filter will be a high-throughput

system which will include heterogeneous computing platforms similar to many high

performance computing clusters. The offline software is designed to solve such tasks

as reconstruction of events, their modelling, as well as physical analysis of the data

obtained as a result of experimentation.

To take advantage of modern computing hardware, the offline software for

the processing of experimental data should be capable of taking advantage of con-

current programming techniques, such as vectorization and thread-based program-

ming. This is the reason why Gaudi framework is chosen for SPD. Of particular

interest is Gaudi Hive – extension to Gaudi with multithreading support.

ABOUT GAUDI

Gaudi is a software package containing all the necessary interfaces and com-

ponents for writing frameworks for experiments in high-energy physics [3]. Initially

Gaudi was developed for the internal needs of the LHCb collaboration, but soon

after the ATLAS collaboration joined the development it became clear that the pack-

age can be easily transformed for any other experiment. The robustness of the pack-

age is confirmed by its use in numerous collaborations around the world.

Gaudi makes clear distinction between data and procedures. This isolation is

achieved by building an architecture, which is a set of components and rules of their

interaction. Each component has its own interface and functionality. The user's task

is reduced to defining the functionality of a particular component while preserving

5

its interface. Programmatically, this is done by inheriting from one of the base clas-

ses. The architecture of the framework is shown on figure 1.

Figure 1 – Gaudi architecture

The central component in this framework is the Algorithm, which transforms

raw event data into processed data e.g. from detector digitizations to hits, from hits

to clusters or tracks, from tracks to jets, etc. The implementation of these Algorithms

encapsulates the knowledge physicists have of detector and physics performance,

and represents the real substance of these data processing applications. The software

integrators then combine a fairly large number of these Algorithms, together with

other components that provide core functionality, in order to assemble and configure

a complete application.

Algorithms are initialized at the beginning of the job and run sequentially in a

predefined order for each event in the main event loop, and finalized at the end to

output any statistical quantities. The sequencing of algorithms such that some can

run in parallel is central to enabling the concurrent execution of code when pro-

cessing a single event.

The way an Algorithm interacts with the framework is kept very simple. It

interacts solely with a special piece of code called the Transient Event Data Store in

order to retrieve its input data and eventually also to store the results it produces,

called the data products. The execution of each Algorithm is completely independent

of those other algorithms (the producers) that provide its input data, as well as those

algorithms (the consumers) that make use of its results.

6

The main disadvantage of Gaudi is the lack of multithreading. To take ad-

vantage of modern computing hardware, the offline software for the processing of

experimental data should be capable of taking advantage of concurrent programming

techniques, such as vectorization and thread-based programming. This is the reason

why another framework based on Gaudi was developed – Gaudi Hive.

GAUDI HIVE

Gaudi Hive follows the concept of task parallelism [4]. Here a task executes

a given Algorithm on a given event. The dependencies of these tasks on each other

can be expressed in terms of a directed acyclic graph formed from the input-output

relation of the Algorithms (figure 2).

Figure 2 – The dataflow between Algorithms

Gaudi Hive is based on driving the execution according to the availability of

data. In practice, this is achieved as follows. The central elements are depicted on

figure 3 and include a special parallel Scheduler and the Whiteboard as thread-safe

event store. All Algorithms are required to declare their required input data as part

of the initialization step.

7

Figure 3 – Gaudi Hive architecture

The Whiteboard is a multi-event store, which can contain multiple Event

Stores, implements the original event store’s interface in a thread safe manner [5].

Algorithms are usually not thread-safe and so a complex Algorithm, such as

found in track reconstruction, cannot be applied in two events at the same time and

therefore it requires that the CPU has exclusive access to internal states of the track

Algorithm. In Gaudi Hive, the management of exclusive Algorithm instances is done

via a (thread-safe) AlgorithmPool. To reduce the blocking due to busy algorithms,

the presented prototype allows the cloning of Algorithms, so that multiple instances

of the same Algorithm are available in the AlgorithmPool.

As soon as new data become available in the Whiteboard, the Scheduler

checks to see whether there are Algorithms whose input data dependencies are ful-

filled. Concrete Algorithm instances are then requested from an AlgorithmPool. As

soon as execution is finished, the instance is released again to the AlgorithmPool.

So, Gaudi Hive allows to parallelize event processing, as well as run several

independent algorithms in parallel within the processing of a single event [6].

Figure 4 shows the scheme of parallel processing of three events using a single

Algorithm. In this case, a clone of the Algorithm and Event Store is created for each

event.

8

Figure 4 – Scheme of parallel processing of three events using a single Algorithm

(clones)

Figure 5 shows an example of parallel execution of Algorithms with the pro-

cessing of a single event.

Figure 5 – Example of parallel Algorithms execution

The Algorithms are executed in the following order:

9

– TopAlgorithm is runs first, do something and put DataObject T1 into the

Event Store;

– three different MidAlgorithm whose inputs is DataObject T1 are runs in par-

allel and produce DataObject A1, A2 and A3;

– BotAlgorithm whose input is DataObject A1, A2 and A3 runs after comple-

tion of all MidAlgorithms.

JOB OPTIONS PYTHON SCRIPT FOR USING GAUDI HIVE

Job Options files are used to run Gaudi. The term Job refers to running a pro-

gramme in a certain configuration on certain input data. In order to configure a Job,

Gaudi provides a mechanism for Job Options files, which are a set of commands

interpreted by Gaudi. The language of these commands describes the sequence of

algorithms, their parameters, the services used, the input data, and more. However,

most modern experiments use a different approach. It involves configuring tasks us-

ing Python scripts.

In Python script first of all, we need to import all needed python classes: Al-

gorithms and Services from Configurabels module and Gaudi Hive classes. Gaudi

Hive’s main classes are as follows:

– HiveWhiteBoard – event data service;

– HiveSlimEventLoopMgr – event loop manager;

– AvalancheSchedulerSvc – scheduler service;

– AlgResourcePool – used for enable algorithm cloning.

Also we need to import ApplicationMgr class from Gaudi.Configuration

module, that is responsible for launching Gaudi app.

During import, Gaudi scan special .confdb and .confdb2 files, which contains

names of Python modules and files. These modules and files are creating during

building project with CMake. Python files contains classes of algorithms and ser-

vices with their properties.

On the next step we can create a global variables with number of Event Stores,

events and thread pool size. For example, in case according to the scheme on figure

4, we need to run processing of three events in parallel. Each event will be processed

in a separate thread (i.e. the thread pool size is equal to three), and a separate Event

Store for each event will be used (i.e. the number of Event Stores is also equal to

three).

Next step is creating instances of HiveWhiteBoard, HiveSlimEventLoopMgr

and AvalancheSchedulerSvc classes and pass configuration via their constructor or

properties:

– for HiveWhiteBoard: proprety EventSlots – a number of Event Stores for

each event processing;

10

– for AvalancheSchedulerSvc: property ThreadPoolSize – number of threads

in thread pool.

In the same way we need to create instances of Algorithm. Since the events

will be processed in parallel, it's necessary to specify the number of algorithm clones

that will be created by the Gaudi to process each event. The number of clones is

specified in the property named Cardinality [7].

Also, we need to «say» Gaudi that it can clone algorithms. This can be done

by creating an instance of AlgResourcePool class and specifying property Over-

rideUnClonable with True value.

Finaly, we need to create instance of ApplicationMgr class and pass next prop-

erties:

– EvtMax – number of events to processing;

– EvtSel – event selection;

– ExtSvc – list with external services;

– EventLoop – event loop manager (to use Hive it should be instance of

HiveEventLoopMgr);

– TopAlg – list of top level algorithms;

– MessageSvcType – message service for streaming info, warning, debug and

error messages to the standard output stream (for Hive it’s the InertMessageSvc).

Gaudi app will start automaticly during creating instance of ApplicationMgr.

To run Gaudi app with Job Options Python script, the gaudirun.py script is

used with the Job Options script passed as its parameter.

ALGORITHMS PIPELINES AND BRANCHES IN JOB OPTIONS

PYTHON SCRIPT

There is a GaudiSequencer class designed to manage the execution order of

Algorithms. It can encapsulate a series of Algorithms and control their execution as

a single unit. Its ensures that Algorithms are executed in a specific order.

In GaudiSequencer can specify how the algorithms should be executed: se-

quentially or in parallel. The member of GaudiSequencer can be not only Algorithm

but also GaudiSequencer, because it’s inherit Algorithm class. In this way, it is pos-

sible to create an algorithms pipeline. Figure 6 shows example of algorithms pipeline

with parallel GaudiSequencer in sequential. GaudiSequencer A is in sequential

mode, GaudiSequencer B is in parallel mode.

11

Figure 6 – Example of algorithms pipeline using GaudiSequencer

In Job Options Python script GaudiSequencer class is located in the Configu-

rables module.

Also, GaudiSequencer class has a ModeOR property boolean type for creating

algorithm's branches. In OR mode execution of sequence is terminated as soon as

one of the Algorithms is completed. In AND mode execution of sequence is termi-

nated after all Algorithms are completed. Schematically, it’s shows on figure 7.

Figure 7 – Algorithms execution using GaudiSequencer in OR and AND mode

FilterPassed is Algorithm property, which means is algorithm task was com-

pleted successfully or not (no critical error has occurred, just task of the algorithm

is not completed and need to execute another algorithm’s branch for such situation).

SETTING INPUTS AND OUTPUTS OF GAUDI ALGORITHM

Gaudi Hive can automatically compose the correct sequence of Algorithms

execution using information about Algorithm's inputs and outputs. To set inputs and

12

outputs we need to declare DataObject handlers, which provide opportunity to read

and write data to Event Store.

In algorithm include file:

– create property with vector of strings for inputs and outputs paths;

– create map with Event store path as key and unique pointer for DataObjec-

tHandle as value.

In algorithm cpp file in initialize method we need to create instances of the

DataObjectHandle class for each input and output. This class contains methods for

interaction with Event store. As constructor parameters we need to pass a path to

DataObject in the Event store, mode (Reader or Writer) and link to the owner class

instance. Mode is enumeration in Gaudi DataHandle class. Mode Reader means that

Algorithm read data from the Event store (i.e. it’s Algorithm’s input), and mode

Writer means that algorithm write data into the Event store (i.e. it’s Algorithm’s out-

put).

To put and get DataObject from the Event store it’s used put and get method

accordingly from DataObjectHandle class.

13

CONCLUSION

As a result of this work, the architecture, components and main features of

Gaudi framework and its extension – Gaudi Hive – were studied. Also learnt how to

write Job Options and run Gaudi via Python script.

Gaudi Hive allows to process several events in parallel and execute algorithms

in parallel within one event processing, which allows to increase the speed of data

processing on multi-core CPUs. At the same time, it is not necessary to take care

that algorithms were thread-safe, because a clone of the algorithm is automatically

created for each thread.

Gaudi also provides a possibility to create algorithms pipelines and branches.

And Gaudi Hive implements a mechanism of automatic composing the correct se-

quence of algorithms execution using information about algorithm's inputs and out-

puts.

Configuring algorithms and services via Python script allows to automate the

setup and startup of Gaudi, which is extremely useful in distributed computing sys-

tems.

14

REFERENCES

1. Conceptual design of the Spin Physics Detector / The SPD collaboration //

JINR, 2022. – 162 p.

2. Technical Design Report of the Spin Physics Detector at NICA / The SPD

collaboration // JINR, 2024. – 349 p.

3. Gaudi Project documentation, https://gaudi-framework.readthedocs.io

4. Hegner, B. Evolving LHC Data Processing Frameworks for Efficient Ex-

ploitation of New CPU Architectures / B. Hegner, P. Mato, D. Piparo // CERN, 2012.

5. Clemencic, M. Introducing concurrency in the Gaudi data processing

framework / M. Clemencic // Journal of Physics: Conference Series, 2014.

6. Gaudi/Athena Multithreaded Scheduling, https://indico.cern.ch

/event/931842/contributions/3916050/attachments/2067127/3469328/AthenaGau-

diScheduling.pdf.

7. Leggett, C. AthenaMT: upgrading the ATLAS software framework for the

many-core world with multithreading / C. Leggett // Journal of Physics: Conference

Series, 2017.

15

ACKNOWLEDGMENTS

The author expresses gratitude to Dr. Danila Oleynik for providing compre-

hensive guidance, technical support and valuable recommendations. I am also grate-

ful to the organizers of START for the opportunity to complete the program.

