
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Veksler and Baldin Laboratory of High Energy Physics

FINAL REPORT ON THE SUMMER STUDENT PROGRAM

Improvement of methods for event reconstruction in the BM@N
experiment.

Supervisors:
Segei P. Merts

Oleg V. Rogachevskiy

Student:
Andrew V. Zelenov

Peter the Great St.Petersburg Polytechnic University

Participation period:
July 10 – August 26

Dubna, 2017

Contents
1 Abstract 2

2 Baryonic Matter at Nuclotron 3
1 Introduction . 3
2 Physical motivation: Nuclotron heavy-ion physics program 3
3 The BM@N detector . 4

3.1 Main characteristics of the experimental setup 5

3 Optimization of primary vertex reconstruction 7
1 Algorithm description . 7

1.1 Kalman filter . 8
2 Algorithm optimization . 8

2.1 Speed performance . 8
2.2 Primary Vertex location accuracy 10

4 Magnetic field map uploading optimization 12

5 Enhancement of tracks finding in GEM detector 13
1 About GEM detector . 13
2 Algorithm description . 13
3 New algorithm . 14

6 Conclusion 16

7 Acknowledgements 16

8 References 16

1

1 Abstract
This report discusses several tasks that were solved during JINR Summer Students Pro-
gram. They are all connected with the optimization of existing algorithms such as Primary
Vertex Finding, Tracks Finding and Magnetic Field Map initialization.

The efficiency of Primary Vertex finding depends entirely on the quality of founded
Tracks. So, this two tasks are the two inseparable parts.

The current algorithm of Primary Vertex Finding has two problems: Speed perfor-
mance of algorithm and the accuracy of determining of Primary Vertex location. In this
report will set out solutions to these problems.

The algorithm of Tracks Finding needed to be improved, because set the search param-
eters of the track make it impossible to find all the tracks, because of what the efficiency
is not as high as could be.

Magnetic Field Map initialization is not a problem, but time of this initialization – is
the biggest part of full initialization. So, it is reasonable to improve this and as one of
the possible solutions to translate the map into a ROOT tree format.

2

2 Baryonic Matter at Nuclotron

1 Introduction

Relativistic heavy ion collisions provide the unique opportunity to study nuclear matter
under extreme density and temperature. In the collision, nuclear matter is heated up
and compressed for a very short period of time. At moderate temperatures, nucleons are
excited to baryonic resonances which decay by the emission of mesons. At higher temper-
atures, also baryon-antibaryon pairs are created. This mixture of baryons, antibaryons
and mesons, all strongly interacting particles, is denoted as hadronic matter or baryonic
matter if baryons dominate. If the energy density in the formed fireball is sufficiently large
the quark-gluon substructure of nucleons becomes visible. At even higher temperatures
or densities hadrons melt, and the constituents, quarks and gluons, form a new phase,
the Quark-Gluon Plasma (QGP). At these extreme conditions the following features of
strongly interacting matter can be studied: the equation-of-state (EoS) of strongly in-
teracting matter at high temperatures and high net-baryon densities; the microscopic
structure of strongly interacting matter as a function of temperature and baryon density;
the in-medium modifications of hadrons which might provide information on the onset
of chiral symmetry restoration. Theoretical models, however, suggest different possible
scenarios to describe these features of strongly interacting matter. So that new experi-
mental data with high resolution and statistics are needed in order to disentangle different
theoretical predictions.

2 Physical motivation: Nuclotron heavy-ion physics program

The ratio of produced mesons to baryons in the fireball increases with the collision energy.
A nucleus-nucleus collision at the Nuclotron beam kinetic energy in the range from 1 to
4.5 GeV per nucleon produces a baryon dominated fireball contrary to higher energies
at RHIC or SPS. According to the QGSM transport model calculations at the Nuclotron
energies the nucleon densities in the collision zone of two gold nuclei exceed the saturation
density by a factor of 3 - 4. At these densities nucleons start to overlap, and it is expected
that under such extreme conditions the onset of chiral symmetry restoration might occur
although quarks are still confined. It will reveal in in-medium modification of hadrons,
in particular, in collisional broadening, dropping mass of vector mesons decaying into
di-leptons which are not much affected by final-state interactions. The relevant degrees of
freedom at the Nuclotron energies are first of all nucleons and their excited states followed
by light and strange mesons. Also the partonic degrees of freedom should show up in
small space-time volumes and leave their traces in final hadronic observables. The focus
of experimental studies will be on hadrons with strangeness, which are early produced in
the collision and not present in the initial state of two colliding nuclei, unlike nucleons
made up from light (u, d)-quarks. The measured production yields of light and strange
mesons, as well as of hyperons and anti-hyperons are show in figure 1 as a function of
the nucleon-nucleon collision energy in c.m.s. The Nuclotron heavy ion beam energy
range corresponds to

√
𝑠𝑁𝑁 = 2.3 − 3.5 GeV. It is well suited for studies of strange

mesons and multi-strange hyperons which are produced in nucleus-nucleus collisions close
to the kinematic threshold. Heavy-ion collisions are a rich source of strangeness, and the
coalescence of lambda-hyperons with nucleons can produce a variety of light hyper-nuclei.
The study of the hyper-nuclei production is expected to provide new insights into the
properties of the hyperon-nucleon and hyperon-hyperon interactions. Figure 2 presents
the yields of hyper-nuclei as a function of the nucleon-nucleon collision energy in c.m.s.
in Au+Au collisions, predicted by a thermal model. The maximum in the hyper-nuclei
production rate is predicted at

√
𝑠𝑁𝑁 ∼ 4 − 5 GeV, which is close to the Nuclotron

energy range. In sum, the research program on heavy-ion collisions at the Nuclotron
includes the following topics: investigation of the reaction dynamics and nuclear EoS,

3

study of the in-medium properties of hadrons, production of (multi)-strange hyperons at
the threshold and search for hyper-nuclei. In order to interpret experimental data from
heavy-ion collisions and to provide normalization for the measured 𝐴+𝐴 spectra, a study
of elementary reactions (𝑝+𝑝, 𝑝+𝑛(𝑑)) is planned.

Figure 1: Yields of mesons and (anti-) hyperons as a function of the nucleon- nucleon
collision energy in c.m.s. in 𝐴𝑢+𝐴𝑢/𝑃𝑏+𝑃𝑏 collisions, taken from. The Nuclotron BM@N
heavy ion beam energy range corresponds to

√
𝑠𝑁𝑁 = 2.3− 3.5 GeV.

Figure 2: Yields of hyper-nuclei as a function of the nucleon-nucleon collision energy in
c.m.s. in 𝐴𝑢+𝐴𝑢 collisions, calculated with a thermal model. The predicted yields of
3He and 4He nuclei are included for comparison. The Nuclotron BM@N energy range√
𝑠𝑁𝑁 = 2.3− 3.5 GeV is specified.

3 The BM@N detector

BM@N (Baryonic Matter at Nuclotron) is the first experiment at the accelerator complex
of NICA Nuclotron. The schematic view of the NICA-Nuclotron complex and the position
of the BM@N setup are presented in figure 3. The sources of light and heavy ions, the
beam Booster, Nuclotron accelerator and NICA collider are shown. The heavy-ion physics
program of the NICA accelerator complex and the MPD experiment planned at the NICA

4

collider are described in. The aim of the BM@N experiment is to study interactions of
relativistic heavy ion beams with fixed targets. The Nuclotron will provide verity of
beams from protons to gold ions with the kinetic energy of ions ranging from 1 to 6 GeV
per nucleon. The maximum kinetic energy for ions with the ratio of the charge to the
atomic weight (Z/A) of 1/2 is 6 GeV per nucleon. The maximum kinetic energy for heavy
ions with the ratio of Z/A ∼ 1/3 is 4.5 GeV per nucleon. The maximum kinetic energy
of protons is 13 GeV. The beam line between the Nuclotron and the BM@N experiment
is around 160 meter in length. It comprises 26 elements of magnetic optics: 8 dipole
magnets and 18 quadruple lenses. An upgrade program of the beam line is foreseen to
minimize the amount of scattering material on the way of heavy ions to the BM@N setup.

Figure 3: Schematic view of the NICA-Nuclotron complex and the position of the BM@N
setup.

The planned intensity of the gold ion beam accelerated and accumulated in the Nu-
clotron and the Booster and transported to the BM@N experimental zone is up to 107

ions per second.
The gold ion beam is expected in the end of 2018. In the period before 2018 the

following ions are foreseen to accelerate: the polarized deuteron beam in 2016, the carbon,
argon and krypton beams in 2017. In this period of operation the planned intensity of
the beam interacting with the target inside the BM@N setup is 106 ions per second.
The proton-proton interactions will be studied after the Nuclotron upgrade in 2018 using
the proton beam and the liquid hydrogen target. Figure 4 shows the diagram of the
interaction rates accepted by data acquisition systems of heavy ion experiments running
at different energies of colliding nuclei.

The beam energy range in the BM@N experiment overlaps partially with that in
the HADES experiment. The interaction rate of triggered non peripheral central and
intermediate events at the second stage of the BM@N experiment is expected to be around
50 kHz. It is limited by the capacity of the readout electronics and data acquisition system.

3.1 Main characteristics of the experimental setup

A sketch of the proposed experimental set-up is shown in Figure 5. The experiment
combines high precision track measurements with time-of-flight information for particle
identification and uses total energy measurements for the analysis of the collision central-
ity. The charged track momentum and multiplicity will be measured with the set of two

5

Figure 4: Heavy ion experiments: interaction rate and nucleon-nucleon collision energy
in c.m.s.

Figure 5: Schematic view of the BM@N setup.

coordinate planes of GEM (Gaseous Electron Multipliers) detectors located downstream
of the target in the analyzing magnet and the drift/straw chambers (DCH, Straw) situ-
ated outside the magnetic field. The GEM detectors sustain high rates of particles and
are operational in the strong magnetic field. The gap between the poles of the analyzing
magnet is around 1 m. The magnetic field can be varied up to 1.2 T to get the optimal
BM@N detector acceptance and momentum resolution for different processes and beam
energies. The design parameters of the time-of-flight detectors based on multi-gap resis-
tive plate chambers (mRPC-1,2) with a strip read-out allow us to discriminate between
hadrons (𝜋,K,p) as well as light nuclei with the momentum up to few GeV/c produced
in multi-particle events. The zero degree calorimeter (ZDC) is designed for the analysis
of the collision centrality by measuring the energy of forward going particles. The T0
detector, partially covering the backward hemisphere around the target, is planned to
trigger central heavy ion collisions and provide a start time (T0) signal for the mRPC-1,2
detectors. An electro-magnetic calorimeter will be installed behind the outer drift/straw
chambers and mRPC-2 wall to study processes with electro-magnetic probes (𝛾, e±) in
the final state.[1]

6

3 Optimization of primary vertex reconstruction
The primary vertex is a point, where a high energy beam collides with a matter of target.
In particle physics, an interaction point (IP) is the place where particles collide. One
differentiates between the nominal IP, which is the design position of the IP, and the real
or physics IP, which is the position where the particles actually collide. The real IP is the
primary vertex of the particle collision.

1 Algorithm description

Previous version of algorithm based on method of virtual planes. The range from −100𝑐𝑚
to 100𝑐𝑚 splitted by 400 virtual planes for Kalman filter. After that Kalman filter
searched points of intersection between tracks and virtual planes. Then was calculated
distances between points in every virtual plane to search mean distance. The Z coordinate
of plane with minimal mean distance characterized as a location of Primary Vertex.

Z

X

di

X

Y

virtual planes tracks

Figure 6: Virtual planes method

On the Figure 6 visualized virtual planes method. Blocks with red points – XY-
projection of virtual planes and red points – points of intersection between tracks and
virtual planes. Mean distance for every plane calculated by formula:

𝜇𝑑𝑖𝑠𝑡 =
∑︁
𝑖

𝑑𝑖
𝑁

First of all was analyzed the code and revealed two problems:

1. Speed performance of algorithm. The resolution of primary vertex reconstruction
was achieved by using a huge number of "virtual planes" for Kalman filter.

2. Gauss fitting of the result. Primary vertex reconstruction based on tracks recon-
struction in GEM detector. It turns out that tracks of secondary particles give a
contribution to the final distribution.

7

1.1 Kalman filter

The Kalman filter uses a system’s dynamics model (e.g., physical laws of motion), known
control inputs to that system, and multiple sequential measurements (such as from sen-
sors) to form an estimate of the system’s varying quantities (its state) that is better than
the estimate obtained by using only one measurement alone. As such, it is a common
sensor fusion and data fusion algorithm.

Noisy sensor data, approximations in the equations that describe the system evolution,
and external factors that are not accounted for all place limits on how well it is possible
to determine the system’s state. The Kalman filter deals effectively with the uncertainty
due to noisy sensor data and to some extent also with random external factors. The
Kalman filter produces an estimate of the state of the system as an average of the system’s
predicted state and of the new measurement using a weighted average. The purpose of the
weights is that values with better (i.e., smaller) estimated uncertainty are "trusted" more.
The weights are calculated from the covariance, a measure of the estimated uncertainty
of the prediction of the system’s state. The result of the weighted average is a new state
estimate that lies between the predicted and measured state, and has a better estimated
uncertainty than either alone. This process is repeated at every time step, with the new
estimate and its covariance informing the prediction used in the following iteration. This
means that the Kalman filter works recursively and requires only the last "best guess",
rather than the entire history, of a system’s state to calculate a new state.

The relative certainty of the measurements and current state estimate is an important
consideration, and it is common to discuss the response of the filter in terms of the
Kalman filter’s gain. The Kalman gain is the relative weight given to the measurements
and current state estimate, and can be "tuned" to achieve particular performance. With
a high gain, the filter places more weight on the most recent measurements, and thus
follows them more responsively. With a low gain, the filter follows the model predictions
more closely. At the extremes, a high gain close to one will result in a more jumpy
estimated trajectory, while low gain close to zero will smooth out noise but decrease the
responsiveness.

When performing the actual calculations for the filter (as discussed below), the state
estimate and covariances are coded into matrices to handle the multiple dimensions in-
volved in a single set of calculations. This allows for a representation of linear relationships
between different state variables (such as position, velocity, and acceleration) in any of
the transition models or covariances. [2]

2 Algorithm optimization

2.1 Speed performance

To solve the first problem, was added an iterative algorithm with 5 "virtual planes". In
the first step it gets overrated range of tentatively primary vertex location. As a result,
we have distribution function of mean dist between points in "virtual planes" from Z
coordinate of this planes. This function is well fitted by a second degree polynomial.
After fitting we get vertex of a parabola, which become a new center of overrated range
of tentatively primary vertex location. But from iteration to iteration range is reduced in
two times while it doesn’t less than 0.1𝑐𝑚. In the end we have primary vertex location
with algorithm precision to 0.02𝑐𝑚 in every event.

On the Figure 7 visualized a realization of this iteration method. Red lines are second
degree polynomial fit functions.

8

Z

<dist>

Z

Z

<dist>

<dist>

Figure 7: New Algorithm realization

Figure 8: Speed performance of algorithm

We can see from Figure 8 that the algorithm became faster by 4 times. The accuracy
of the determination of primary vertex is still remained at the same level.

To analyze performance improvements was used Google Performance Tools(GPT)[3].
GPT – is a set of tools, that allow to make performance analysis, analyse memory alloca-
tion and find memory leaks. In the Figure 9 and Figure 10 we can see graphical output
of this analysis. But this output gives information, that for CPU using new algorithm
become faster by 2 times.

9

/opt/fairsoft_may16p1_gcc54/install/bin/root.exe
Total samples: 23390
Focusing on: 23390
Dropped nodes with <= 116 abs(samples)
Dropped edges with <= 23 samples

main
0 (0.0%)

of 23056 (98.6%)

TRint
Run

0 (0.0%)
of 23053 (98.6%)

23053

G__getfunction
0 (0.0%)

of 23054 (98.6%)

G__interpret_func
0 (0.0%)

of 23054 (98.6%)

46149

G__call_cppfunc
0 (0.0%)

of 23053 (98.6%)

23053

G__exec_statement
0 (0.0%)

of 23052 (98.6%)

23095

__libc_start_main
0 (0.0%)

of 23054 (98.6%)

23054

_start
0 (0.0%)

of 23054 (98.6%)

23054

Cint
G__ExceptionWrapper

0 (0.0%)
of 23053 (98.6%)

G__G__BaseDict_710_0_7
0 (0.0%)

of 22859 (97.7%)

22859

G__execute_call
0 (0.0%)

of 23053 (98.6%)

23053

23053

TApplication
ProcessLine

0 (0.0%)
of 23049 (98.5%)

23048

G__getexpr
0 (0.0%)

of 23051 (98.6%)

23091

G__process_cmd
0 (0.0%)

of 23052 (98.6%)

G__calc_internal
0 (0.0%)

of 23051 (98.6%)

23051

TCint
ProcessLine

0 (0.0%)
of 23052 (98.6%)

23053

23051

G__getitem
0 (0.0%)

of 23051 (98.6%)

46127

23094

G__getvariable
0 (0.0%)

of 23033 (98.5%)

23033

TApplication
ExecuteFile

0 (0.0%)
of 23050 (98.5%)

TCint
ProcessLineSynch

0 (0.0%)
of 23050 (98.5%)

23051

23051

23049

G__getstructmem
0 (0.0%)

of 23036 (98.5%)

23036

23033

FairRunAna
Run

0 (0.0%)
of 22859 (97.7%)

FairTask
ExecuteTask

0 (0.0%)
of 21496 (91.9%)

21496

FairRunAna
Fill
0 (0.0%)

of 777 (3.3%)

777

FairRootManager
ReadEvent

0 (0.0%)
of 511 (2.2%)

507

22859

FairTask
ExecuteTasks

0 (0.0%)
of 21496 (91.9%)

21496

BmnGemStripDigitizer
Exec

0 (0.0%)
of 13736 (58.7%)

13736

BmnGemTracking
Exec

70 (0.3%)
of 6059 (25.9%)

6059

BmnGemVertexFinder
Exec

0 (0.0%)
of 911 (3.9%)

911

of 769 (3.3%)

769

BmnGemStripDigitizer
ProcessMCPoints

8 (0.0%)
of 13542 (57.9%)

13542

BmnGemStripStationSet
AddPointToDetector

0 (0.0%)
of 13032 (55.7%)

13032

BmnGemStripStation
AddPointToStation

0 (0.0%)
of 13032 (55.7%)

BmnGemStripModule
AddRealPointFull

637 (2.7%)
of 13031 (55.7%)

13031

13032

BmnGemStripLayer
ConvertPointToStripPosition

1199 (5.1%)
of 5135 (22.0%)

5135

TRandom
Gaus

2474 (10.6%)
of 4203 (18.0%)

4202

BmnGemStripLayer
IsPointInsideStripLayer

518 (2.2%)
of 2178 (9.3%)

2175

StripCluster
AddStrip
(inline)
441 (1.9%)

of 677 (2.9%)

676

BmnGemTracking
Tracking

2 (0.0%)
of 5825 (24.9%)

5825

BmnGemTracking
NearestHitMerge

45 (0.2%)
of 5622 (24.0%)

5618

BmnKalmanFilter_tmp
TGeoTrackPropagate

39 (0.2%)
of 5638 (24.1%)

BmnGeoNavigator
FindIntersections

50 (0.2%)
of 2818 (12.0%)

2818

BmnKalmanFilter_tmp
RK4TrackExtrapolate

53 (0.2%)
of 1680 (7.2%)

1680

BmnMaterialEffects
Update

15 (0.1%)
of 812 (3.5%)

812

4746

BmnGemStripLayer
ConvertNormalPointToStripX

600 (2.6%)
of 4038 (17.3%)

3936

TRandom3
Rndm

1547 (6.6%)

1543

TMath
Cos

(inline)
130 (0.6%)

of 2277 (9.7%)

2277

TMath
Sin

(inline)
13 (0.1%)

of 1161 (5.0%)

1161

BmnGeoNavigator
MakeStep

48 (0.2%)
of 1348 (5.8%)

1348

BmnGeoNavigator
InitTrack

32 (0.1%)
of 672 (2.9%)

672

__cos_avx
783 (3.3%)

of 2147 (9.2%)

2147

BmnGemStripLayer
IsPointInsideDeadZones

241 (1.0%)
of 1660 (7.1%)

1660

do_cos
(inline)

1100 (4.7%)

1100

BmnKalmanFilter_tmp
RK4Order

98 (0.4%)
of 1296 (5.5%)

1294

DeadZoneOfStripLayer
IsInside
(inline)

1318 (5.6%)

1318

TGeoNavigator
FindNextBoundaryAndStep

46 (0.2%)
of 1075 (4.6%)

1075

__sin_avx
944 (4.0%)

of 1148 (4.9%)

1148

TGeoNavigator
FindNextDaughterBoundary

40 (0.2%)
of 747 (3.2%)

747

BmnNewFieldMap
FieldInterpolate

199 (0.9%)
of 944 (4.0%)

BmnGemVertexFinder
FindVertexByVirtualPlanes

0 (0.0%)
of 911 (3.9%)

911

27
BmnGemVertexFinder
FindVZByVirtualPlanes

1 (0.0%)
of 884 (3.8%)

884

850

BmnMatch
~BmnMatch

103 (0.4%)
of 782 (3.3%)

139

FairRootManager
Fill

1 (0.0%)
of 777 (3.3%)

TTree
Fill
0 (0.0%)

of 776 (3.3%)

776

777

TBranchElement
Fill

0 (0.0%)
of 765 (3.3%)

765

BmnGemStripHitMaker
ProcessDigits

32 (0.1%)
of 757 (3.2%)

755

767

TBranch
Fill
2 (0.0%)

of 764 (3.3%)

764

TBranch
WriteBasket

1 (0.0%)
of 479 (2.0%)

429

108

TGeoShapeAssembly
DistFromOutside

72 (0.3%)
of 488 (2.1%)

488

TGeoNavigator
FindNode

17 (0.1%)
of 536 (2.3%)

536

TGeoNavigator
SearchNode

73 (0.3%)
of 672 (2.9%)

562

TTree
GetEntry

2 (0.0%)
of 573 (2.4%)

TBranchElement
GetEntry

3 (0.0%)
of 571 (2.4%)

571

505

TBranch

GetEntry

5 (0.0%)

of 567 (2.4%)

567

519

FairFileSource
ReadEvent

0 (0.0%)
of 511 (2.2%)

511

511

170

TBasket
WriteBuffer

0 (0.0%)
of 477 (2.0%)

477

R__zipMultipleAlgorithm
1 (0.0%)

of 478 (2.0%)

deflate
1 (0.0%)

of 472 (2.0%)

472

456

crc32_combine64
325 (1.4%)

of 471 (2.0%)

471

359

std

_Destroy

(inline)

6 (0.0%)

of 459 (2.0%)

407

469

BmnGemStripHitMaker
 Exec
 0 (0.0%)

Figure 9: GPT output for old algorithm

/opt/fairsoft_may16p1_gcc54/install/bin/root.exe
Total samples: 22725
Focusing on: 22725
Dropped nodes with <= 113 abs(samples)
Dropped edges with <= 22 samples

main
0 (0.0%)

of 22390 (98.5%)

TRint
Run

0 (0.0%)
of 22386 (98.5%)

22386

__libc_start_main
0 (0.0%)

of 22389 (98.5%)

22389

_start
0 (0.0%)

of 22388 (98.5%)

22388

G__interpret_func
0 (0.0%)

of 22387 (98.5%)

G__exec_statement
0 (0.0%)

of 22385 (98.5%)

22438

G__call_cppfunc
0 (0.0%)

of 22383 (98.5%)

22383

G__getfunction
0 (0.0%)

of 22386 (98.5%)

44824

TApplication
ProcessLine

0 (0.0%)
of 22382 (98.5%)

22381

G__getexpr
0 (0.0%)

of 22384 (98.5%)

22432

G__getitem
0 (0.0%)

of 22385 (98.5%)

22438

G__getvariable
0 (0.0%)

of 22355 (98.4%)

22355

G__process_cmd
0 (0.0%)

of 22385 (98.5%)

G__calc_internal
0 (0.0%)

of 22384 (98.5%)

22384

TCint
ProcessLine

0 (0.0%)
of 22385 (98.5%)

22386

22384

44792

TApplication
ExecuteFile

0 (0.0%)
of 22384 (98.5%)

TCint
ProcessLineSynch

0 (0.0%)
of 22384 (98.5%)

22385

22385

Cint
G__ExceptionWrapper

0 (0.0%)
of 22383 (98.5%)

G__G__BaseDict_710_0_7
0 (0.0%)

of 22170 (97.6%)

22170

G__execute_call
0 (0.0%)

of 22383 (98.5%)

22383

22383

22382

G__getstructmem
0 (0.0%)

of 22355 (98.4%)

22355

22355

FairRunAna
Run

0 (0.0%)
of 22170 (97.6%)

FairTask
ExecuteTask

0 (0.0%)
of 20717 (91.2%)

20717

FairRunAna
Fill
0 (0.0%)

of 767 (3.4%)

767

FairRootManager
ReadEvent

0 (0.0%)
of 619 (2.7%)

612

22170

FairTask
ExecuteTasks

0 (0.0%)
of 20717 (91.2%)

20717

BmnGemStripDigitizer
Exec

0 (0.0%)
of 13570 (59.7%)

13570

BmnGemTracking
Exec

60 (0.3%)
of 5870 (25.8%)

5868

BmnGemStripHitMaker
Exec

0 (0.0%)
of 788 (3.5%)

788

BmnGemVertexFinder
Exec

0 (0.0%)
of 474 (2.1%)

474

BmnGemStripDigitizer

ProcessMCPoints

4 (0.0%)

of 13389 (58.9%)

13389

BmnGemStripStationSet
AddPointToDetector

0 (0.0%)
of 12886 (56.7%)

12886

BmnGemStripModule
AddRealPointFull

630 (2.8%)
of 12886 (56.7%)

BmnGemStripLayer
ConvertPointToStripPosition

1133 (5.0%)
of 4950 (21.8%)

4950

TRandom
Gaus

2502 (11.0%)
of 4301 (18.9%)

4299

BmnGemStripLayer
IsPointInsideStripLayer

522 (2.3%)
of 2206 (9.7%)

2205

StripCluster
AddStrip
(inline)
408 (1.8%)

of 635 (2.8%)

635

BmnGemStripStation
AddPointToStation

0 (0.0%)
of 12886 (56.7%)

12886

12886

BmnGemTracking

Tracking

6 (0.0%)

of 5659 (24.9%)

5659

BmnGemTracking

NearestHitMerge

23 (0.1%)

of 5434 (23.9%)

5431

BmnKalmanFilter_tmp
TGeoTrackPropagate

34 (0.1%)
of 5014 (22.1%)

4609

BmnGeoNavigator
FindIntersections

21 (0.1%)
of 2537 (11.2%)

2537

BmnKalmanFilter_tmp
RK4TrackExtrapolate

34 (0.1%)
of 1586 (7.0%)

1586

BmnMaterialEffects
Update

14 (0.1%)
of 694 (3.1%)

694

BmnGemStripLayer
ConvertNormalPointToStripX

557 (2.5%)
of 3919 (17.2%)

3817

TRandom3
Rndm

1615 (7.1%)

1608

TMath
Cos

(inline)
159 (0.7%)

of 2252 (9.9%)

2250

TMath
Sin

(inline)
2 (0.0%)

of 1112 (4.9%)

1112

BmnGeoNavigator
MakeStep

37 (0.2%)
of 1228 (5.4%)

1228

BmnGeoNavigator

InitTrack

22 (0.1%)

of 629 (2.8%)

629

__cos_avx
731 (3.2%)

of 2093 (9.2%)

2093

BmnGemStripLayer
IsPointInsideDeadZones

197 (0.9%)
of 1684 (7.4%)

1684

do_cos
(inline)

1078 (4.7%)

1078

DeadZoneOfStripLayer
IsInside
(inline)

1409 (6.2%)

1409

BmnKalmanFilter_tmp
RK4Order

97 (0.4%)
of 1252 (5.5%)

1249

TGeoNavigator
FindNextBoundaryAndStep

52 (0.2%)
of 1022 (4.5%)

1022

__sin_avx
914 (4.0%)

of 1110 (4.9%)

1110

TGeoNavigator
FindNextDaughterBoundary

32 (0.1%)
of 685 (3.0%)

685

BmnNewFieldMap
FieldInterpolate

191 (0.8%)
of 898 (4.0%)

BmnGemStripHitMaker
ProcessDigits

37 (0.2%)
of 783 (3.4%)

783

BmnMatch
~BmnMatch

98 (0.4%)
of 704 (3.1%)

119

FairRootManager
Fill

0 (0.0%)
of 767 (3.4%)

TTree
Fill
0 (0.0%)

of 767 (3.4%)

767

767

TBranchElement
Fill
3 (0.0%)

of 755 (3.3%)

755

753

TBranch
Fill
3 (0.0%)

of 752 (3.3%)

752

TBranch
WriteBasket

0 (0.0%)
of 487 (2.1%)

435

103

TGeoShapeAssembly

DistFromOutside

59 (0.3%)

of 475 (2.1%)

475

TTree
GetEntry

2 (0.0%)
of 681 (3.0%)

TBranchElement

GetEntry

4 (0.0%)

of 679 (3.0%)

679

609

TBranch
GetEntry

3 (0.0%)
of 674 (3.0%)

674

TBranch
GetBasket

1 (0.0%)
of 513 (2.3%)

512

TGeoNavigator

SearchNode

58 (0.3%)

of 664 (2.9%)

527

TGeoNavigator

FindNode

5 (0.0%)

of 504 (2.2%)

504

FairFileSource
ReadEvent

0 (0.0%)
of 618 (2.7%)

618

618

TBasket
ReadBasketBuffers

0 (0.0%)
of 511 (2.2%)

511

R__unzip
0 (0.0%)

of 494 (2.2%)

492

499

inflate
8 (0.0%)

of 494 (2.2%)

494

TBasket
WriteBuffer

0 (0.0%)
of 486 (2.1%)

486

R__zipMultipleAlgorithm
0 (0.0%)

of 482 (2.1%)

461

174

BmnGemVertexFinder
FindVertexByVirtualPlanes

0 (0.0%)
of 474 (2.1%)

474

26

Figure 10: GPT output for new algorithm

2.2 Primary Vertex location accuracy

To solve the second problem, was made an analysis. In itself, the final distribution is
not Gaussian. Thus, it is necessary to define the boundaries of the approximation to the
most accurate definition of primary vertex from the final distribution. The width of this
distribution of about 20𝑐𝑚. Firstly we analyzed which part of primary and secondary
particles tracks is in range around primary vertex. To do this we need to match points
from reconstructed track with points from MC track. After that we can determine does
it primary particle track or not.

In the left part of Figure 11 we can see distribution in percents of tracks from primary
particles, which outside the range. In the right part there is the same distribution but
for tracks from secondary particles. Obviously for further analysis point 1𝑐𝑚 is the most
promising.

From Figure 12 we can get function of fit parameters and range around primary vertex.
Also can more accurately assess the limits under which Gauss fit gives us the optimal result
of primary vertex location.

10

Range, cm
0 5 10 15 20 25 30

P
er

ce
n

t
o

f
P

ri
m

ar
y

P
ar

ti
cl

es
, %

0

20

40

60

80

100

Range, cm
0 5 10 15 20 25 30

P
er

ce
n

t
o

f
S

ec
o

n
d

ar
y

P
ar

ti
cl

es
, %

10

20

30

40

50

60

70

80

90

100

Figure 11: left: Distribution in percents of tracks from primary particles. right: Distri-
bution in percents of tracks from secondary particles.

The most appropriate seems to be the point 0.2𝑐𝑚, but from Figure 11 obviously, that
out of range 0.2𝑐𝑚 there are more than 80 percents of primary particles tracks.

As a result, we have optimal range 0.8𝑐𝑚 where primary vertex located in −21.87𝑐𝑚
with an accuracy 0.4𝑐𝑚

Range, cm
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

, c
m

µ

22−

21.95−

21.9−

21.85−

21.8−

21.75−

21.7−

21.65−

21.6−

21.55−

21.5−

Range, cm
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

, c
m

σ

0

0.1

0.2

0.3

0.4

0.5

Figure 12: Gauss fit parameters of Primary Vertex distribution

In the Figure 13 we can see Primary Vertex location distribution per event for 10000
events of QGSM simulation with IP coordinate −21.7𝑐𝑚. Gauss fitting of this distribution
gives us a mean in −21.81𝑐𝑚 with an accuracy 0.35𝑐𝑚

11

Entries 36871

Constant 0.2± 962.9

Mean 0.00±21.81 −

Sigma 0.0001± 0.3482

Primary Vertex location, cm
22.8− 22.6− 22.4− 22.2− 22− 21.8− 21.6− 21.4− 21.2− 21− 20.8− 20.6−

E
n

tr
ie

s

0

200

400

600

800

1000

1200
Entries 36871

Constant 0.2± 962.9

Mean 0.00±21.81 −

Sigma 0.0001± 0.3482

Figure 13: Distribution of Primary Vertex location

4 Magnetic field map uploading optimization
My mission was to improve the uploading of MFM(Magnetic Field Map) for tasks asso-
ciated with the reconstruction of events and other similar tasks. Originally MFM loaded
from ASCII file, which constructed by some rules:

1. First line is "name" of the map. This name also translated to the field type.

2. Next three lines are X, Y and Z limits and number of points.

3. The rest of the lines are 𝐵𝑥, 𝐵𝑦 and 𝐵𝑧 projection of the magnetic field on the X,
Y and Z axis.

Was realized a macro to transform this MFM from ASCII file to ROOT tree. Why is
it optimal?

In the “Input/Output” chapter, we saw how objects can be saved in ROOT files. In
case you want to store large quantities of same-class objects, ROOT has designed the
TTree and TNtuple classes specifically for that purpose. The TTree class is optimized to
reduce disk space and enhance access speed. A TNtuple is a TTree that is limited to only
hold floating-point numbers; a TTree on the other hand can hold all kind of data, such
as objects or arrays in addition to all the simple types.

When using a TTree, we fill its branch buffers with leaf data and the buffers are
written to disk when it is full. Branches, buffers, and leafs, are explained a little later
in this chapter, but for now, it is important to realize that each object is not written
individually, but rather collected and written a bunch at a time.

This is where the TTree takes advantage of compression and will produce a much
smaller file than if the objects were written individually. Since the unit to be compressed
is a buffer, and the TTree contains many same-class objects, the header of the objects
can be compressed.

12

The TTree reduces the header of each object, but it still contains the class name.
Using compression, the class name of each same-class object has a good chance of being
compressed, since the compression algorithm recognizes the bit pattern representing the
class name. Using a TTree and compression the header is reduced to about 4 bytes
compared to the original 60 bytes. However, if compression is turned off, you will not see
these large savings.

The TTree is also used to optimize the data access. A tree uses a hierarchy of branches,
and each branch can be read independently from any other branch.

In this macro, "name" was written as a separate object. For X, Y and Z limits and
number of points was made a structures, which include extra point – step. Step calculated
by formula

𝑆𝑡𝑒𝑝𝑥 =
𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

𝑁𝑢𝑚𝑜𝑓𝑝𝑜𝑖𝑛𝑡𝑠 − 1

and similar for Y and Z axis.
𝐵𝑥, 𝐵𝑦 and 𝐵𝑧 projection of the magnetic field on the X, Y and Z axis was written as

a vectors of size 3.
As a result we have improved of MFM uploading time by 3 times.

5 Enhancement of tracks finding in GEM detector

1 About GEM detector

The BM@N central tracking system is comprised of GEM chambers with two-coordinate
micro-trip readout. Each GEM chamber registers the ionization trail left by charged
particle in the sensitive gas volume. The overall structure of the detector is a set of
separated GEM stations that are located along the beam-axis at a certain distance from
each other. Full GEM tracker configuration (Figure 11) includes 12 such stations, each of
these has a certain type of the GEM chamber. GEM plane is divided into areas. The areas
called "hot zones" are generally placed at the center of the station. Thus we have parts
with strip readout electrically independent from each other in one chamber. It allows us
to process high multiplicity events.

Figure 14: left: GEM tracker full configuration. right: GEM tracker test run
configuration(2016-2017)

2 Algorithm description

The previous version of tracking had two parts: Seed finder and Track finder. In the first
part realized an algorithm for selection of 3 hits in GEM detector. Those hits was written
in a ROOT tree for further analysis. In Track finder part was used the Kalman filter.
It took 3 seeds and propagate for next points to find track. If track was not found, this
massive of seeds thrown away.

13

Figure 15: (x, y) to (𝑥
𝑅
, 𝑦

𝑅
) transformation

From Figure 15 obviously, that there is no way to search track candidates in XY
projection. The solution is to go to a coordinate space, where the hits are grouped in a
more compact way.

{𝑥, 𝑦} →
{︁ 𝑥

𝑅
,
𝑦

𝑅

}︁
, 𝑅 =

√︀
𝑥2 + 𝑦2 + 𝑧2.

For finding tracks candidates, space of normalized coordinates splitted by 1000 corri-
dors in Y-axis. In every corridor searched all combinations between points to find 3 seed
track candidate by some cuts.

3 New algorithm

Main idea was to make single macro with dynamic array of seed to realize an iteration
track finder method. If triple of seeds gives us a track, we mark it as used. In the next
iteration we change cut parameters and try to find tracks again from that massive of
seeds. Iterations stop when there is no track has been found.

Figure 16: Visualisation of iteration method

In Figure 16 we can see how this method works. Dynamic changing of parameters gives
an opportunity to find tracks, which can’t be found with zero step cuts. Blue points are all
seeds, prepared for tracking and red points – seeds, which used in tracks reconstruction.

Realization of this method gives an improved for efficiency of track finding.

14

Figure 17: Efficiency improvement

How the efficiency of the track finding was calculated

𝐸𝑓𝑓 =
𝑁𝑔𝑜𝑜𝑑 −𝑁𝑐𝑙𝑜𝑛𝑒𝑠

𝑁𝑔𝑒𝑛

· 100%

𝐺ℎ𝑜𝑠𝑡 =
𝑁𝑏𝑎𝑑

𝑁𝑟𝑒𝑐

· 100%

𝐶𝑙𝑜𝑛𝑒𝑠 =
𝑁𝑐𝑙𝑜𝑛𝑒𝑠

𝑁𝑟𝑒𝑐

· 100%

𝑁𝑔𝑒𝑛 is a number of reconstructable tracks.
𝑁𝑟𝑒𝑐 is a number of reconstructed tracks.
𝑁𝑔𝑜𝑜𝑑 is a number of good tracks.
𝑁𝑏𝑎𝑑 = 𝑁𝑟𝑒𝑐 −𝑁𝑔𝑜𝑜𝑑

𝑁𝑐𝑙𝑜𝑛𝑒𝑠 is a number of clone tracks.

Some definitions

1. "Reconstructable" tracks are Monte Carlo tracks having at least 4 points in GEM.

2. "Good" tracks are tracks having at least 4 hits and 60% of them correspond the
same Monte Carlo track.

3. "Clones" are two or more "good" tracks which correspond the same Monte Carlo
track.

4. The number of "Clones" is substracted from the number of "good" tracks before
calculation of efficiency is performed.

15

6 Conclusion
To sum up all of discussed issues, a few inferences might be done. The efficiency of Primary
Vertex finding depends entirely on the quality of founded Tracks. So, for better Vertex
finding need to to improve not only the efficiency but also the momentum resolution of
reconstructed tracks.

It is also important to notice, that all of the results were implemented in BmnRoot
(framework for simulation, reconstruction and analysing of data) software system[5].
Moreover, three of algorithms will be included to the systems as a tasks. Thus, they
will provide a new opportunities for research at BM@N.

7 Acknowledgements
The author is very much obliged grateful to S.P.Merts for the support and invaluable
assistance throughout the period of stay in JINR, for his patience, motivation, and im-
mense knowledge. Also I would like to thank P.N.Batyuk for the help and for giving the
opportunity to work on cluster. I am very grateful to O.V.Rogachevskiy for the strategical
guidance of work, too. The author is also obliged to JINR for financial support.

8 References
1. BM@N Conceptual Design Report (BM@N collaboration)

2. R. Fruhwirth, "Application of Kalman filtering to track and vertex fitting", Nucl. In-
strum. Meth. A 262, 444 (1987)

3. GPT https://github.com/gperftools/gperftools

4. BM@N colloboration ”BmnRoot start guide” , Dubna, 2016

5. BnmRoot framework http://mpd.jinr.ru/

16

