
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Veksler and Baldin Laboratory of High Energy Physics

FINAL REPORT ON THE
SUMMER STUDENT PROGRAM

Development of software for analysis of
femtoscopic correlation of K+K- pairs for

pPb collisions in ALICE experiment

Supervisor:
Krystian Rosłon

Student:
Aleksander Szpakiewicz-Szatan,
Poland, aleksander.szsz@gmail.com,

Warsaw University of Technology

Participation period:
July 01 – August 25

Dubna, 2018

Contents
1 Abstract 3

2 Therminator2 setup 4
2.1 What is Therminator2 . 4
2.2 Main depencency - ROOT . 4
2.3 Problems related to Therminator2 setup . 4
2.4 Solution to problems . 5
2.5 Summary . 6

3 Implementing new particles to Aligenqa 7
3.1 What is Aligenqa . 7
3.2 Setup of environment . 7
3.3 Usage of Aligenqa . 7
3.4 Adding new particle . 8
3.5 Modification of AliEn software . 9
3.6 Summary . 9

4 Conclusion 10

5 References 11

6 Acknowledgements 12

7 Appendix - script’s code with comments 13

2

1 Abstract
This report consists of two main chapters.

Its first chapter revolves around Therminator2 software setup. In this chapter it is briefly
explained what Therminator2 software is and what it depends on. Moreover it explains what
probles it causes when user tries to set it up manually. Next solution of those problems is
described and later there is brief summary of effect of my work.

The second chapter concerns Aligenqa software. In that chapter it is explained what
Aligenqa is, what difficulties did its setup cause and how to use it. Later it is explained
what did I do to its code within my task and how it lead me to modification of AliEn
software. In the and of this chapter there is brief summary.

Next there is short conclusion to my internship. Later there is list of referenced materials.
Following is acknowledgments section in which I thank people. In the and I attach source
code of my installer script (with included comments).

3

2 Therminator2 setup
One of my tasks was preparation of working environment for other people. Many scientists
need program for particle collision simulation. Program Therminator2 fulfils that need.
However manual installation of this program is much more complicated (and time consuming)
than setup of typical software. This is the reason why script for automatic setup must have
been developed. The most popular (supported by Therminator2 and ROOT) operating
system amoung the end users is Debian based Linux distro Ubuntu. That is why it was
chosen as main operating system supported by installation script. As Ubuntu is based on
Debian, it was very easy to modify script to support both systems.

2.1 What is Therminator2
Therminator2 (THERMal hevy IoN genrATOR 2) is program developed by Polish team con-
sisting of Mikolaj Chojnacki, Adam Kisiel, Wojciech Florkowski and Wojciech Broniowski.
Therminator2 is Monte Carlo event generator for studies of statistical of particles in rela-
tivistic heavy-ion collisions.

Therminator was originally written in order to perform hadronic freeze-out on simple
boost-invariant hypersurfaces (such as Cracow single-freeze-out model or Blast-Wave model).
However it was later refitted into more versatile tool for heavy-ion experiments. It may be
adapted to analyze experimental data, model detectors or estimate results of experiments[1].

The most feasible way of providing that functionality was usage of CERN’s ROOT frame-
work, which is main dependency of Therminator2 (apart from C++ compiler).

2.2 Main depencency - ROOT
ROOT is a scientific software framework developed with modular approach. ROOT frame-
work consists of mathematical libraries that are highly optimized for parallel processing of
numerical data. Moreover ROOT libraries contain functions for data generation with various
statistical distributions that may be used for simulation of wide variety of models. Further-
more ROOT software features include usage of standarized, tree-based compressed binary
format which allows for efficient data storage. All of those features may be easily accessed
by external programs as ROOT (while written in C++) supplies user with interfaces for
various programming languages[3].

2.3 Problems related to Therminator2 setup
Because the last stable version of Therminator2 was published in 2011 the code became
outdated. This leads to problems when using it in conjunction with modern hardware and
software. Some parts of Therminator2 code became deprecated and later strictly forbidden
by more recent C++ revisions (standards C++2011 and C++2017). Moreover standard
C++ namespace std was in developer’s enviroment used automatically (which is not the

4

case for unmodified environments). The documented requirements of Therminator2 are only
ROOT software suite and C++ compiler, what is not complete list of it’s requirements.

2.4 Solution to problems
Script was written in bash language (I used its manual[2] when I needed it), because it is
supported by target OS text shell. When it executes script checks if user has root privilages
(which are required to realise its task). Later it detects on what OS (distro and version) it
is ran. If it is supported (ir is Debian 9 or Ubuntu 14, 16, 17 or 18) the program proceedes.
If the used distro is correct, but version is not not supported (such as Debian 8 or Ubuntu
15) it informs user about it and suggests either usage of supported version or modification of
script. So it does when distro is not supported (i.e. ARCH based distros such as Manjaro)
or it cannot detect OS.

After determining the operating system script chooses the right version of ROOT to
download (for Ubuntu precompiled binaries exist, Debian user is forced to do timeconsuming
compilation). Next script downloads dependencies that are mostly required libraries and
tools needed for proper compilation of ROOT (in case of Debian system) and Therminator2.
Then script downloads proper version of ROOT to temporary directory (as shown on fig. 1).
After download is finished if it is source installation (Debian) script compiles ROOT’s code
(after waring user about how time-consuming this process is and suggesting doing something
else in meantime). After that (on Debian) or instead of that (on Ubuntu) the ready binaries
are installed systemwide.

Figure 1: Terminal output of running setup script.

5

When script finishes setting ROOT up it downloads Therminator2 source code. When
it is ready it updates it’s code (by inclusion of now mandatory line using namespace std;1
in therm2_events.cxx file). Moreover it corrects order of linker flags in Therminator2’s
makefile, as they would fail to find ROOT libraries properly. It also removes code that creates
Therminator2’s documentation in LateX format (as it’s support doesn’t work corretly and
it may still provide hypertext version of it). Next the script compiles Therminator2 (what
is much quicker than ROOT compilation) and informs user how to run it.

When script finishes setting everything up, it removes ROOT’s temporary files (as they
take a lot of space up). Therminator2’s source code is intentionally left intact, as user may
need to check how it works.

If user uses command line switch –manual, the script downloads doxygen software and
later compiles hypertext documentation for Therminator2. Other supported switches are: -h
which prints usage information and –list-supported-systems that informs user which operating
systems are supported.

In case of failure at any step, script informs user about it. Then it returns unique exit
code, that may be used by external bash script (if end user needs further authomatization) to
react properly. For programmer’s convenience all of used exit codes are defined at beginning
of script.

2.5 Summary
The script (after initial testing) was supplied to Alexey Aparin’s group of students. For
them I have prepared and presented a short presentation (for about 45 minutes) in which
I explained them the informations about usage of my script and basic principals of Ther-
minator2 usage. Alexey’s group used my script and it prepared ROOT and Therminator2
environments for them with requirement of minimal effort on their behalf. It allowed his
students to concentrate on their own tasks. They did not need to follow complicated manuals
or debug outdated Therminator2’s code. Their working environments were ready to use.

1This line informs compiler that code refers to standard library instructions and constant values without
usage of std:: prefix (i.e. cout instead of std::cout).

6

3 Implementing new particles to Aligenqa
Second subtask I was assigned to do was to enhance Aligenqa. My task was to make it
possible for it to include in it’s report output files more types of particles.

3.1 What is Aligenqa
Aligenqa is a tool for preparation of reports from experimental data.Originally it was based
on tools developed by Christian Bourjau within the HMTF2 and was later adapted as general
generator-level QA in ALICE[??]. The tool itself is written in Python language and uses
AliRoot macros.

3.2 Setup of environment
Before I was able to work on Aligenqa I needed to fulfill it’s requirements. While ROOT
and Therminator software required only free, widely available libraries and tools, Aligenqa
was not that simple. In order to be able to use Aligenqa I needed to setup AliRoot and
AliPhysics environment. Accessing their setup manuals on its own required CERN account.
After CERN granted me access to their resources I was able to continue.

Setup of those two frameworks require user to have particular operating system (sup-
ported are only Ubuntu, CentOS, Mac OSX and Fedora). Because of this I have set virtual
machine with Ubuntu up (as alternative solution with usage Docker3 was resulting in errors).

Next I started setting up environment while following the manual[5]. While setting up
AliPhysics dependencies I found out, that in order to download some of them I needed access
to CERN’s git repository. My account did not have privilage of accessing it. I needed to
request access.

After being granted access to it I was able to continue. I spent few days on downloading
the sourcecode (because of problems with Internet connection). When all dependencies were
fullfilled I was able to build AliEn (ALIce ENvironment) software and use it.

While working with AliEn software I was forced to rebuild it as ROOT 6 is not fully
backwards-compatible with ROOT5 (originaly I have built my environment as based on
newest ROOT version, what lead me to programs not executing macros properly).

3.3 Usage of Aligenqa
In order to use Aligenqa user needs to have active AliEn session. Within that session user
may use Aligenqa to download simulation data from CERN server (after authenticating
with CERN creditentials) and to prepare reports out of this data. Aligenqa takes as input
simulation data in root format, then it looks for specific data inside root file trees and than

2One of AliPhysics modules
3Docker is software that allows one Linux based distro pretend to be another. Simply it is leightweight

alternative for virtualization (as it only virtualizes parts of code).

7

segregates it into intermediary root file from which it prepares summary - a pdf file that
consists of segregated charts (which is shown in fig. 2).

Figure 2: Example page of Aligenqa’s output report.

If user tried inputting into Aligenqa file with unsupported data or which lacked some of
root trees it would throw an error (without comment what has caused it). Moreover if user
tried to download data that already was downloaded Aligenqa would refuse to work properly
either. This is why I added basic error handling for it - each critical point of it’s procedure
will inform user what causes problem. Furthermore if error is not critical it would skip that
particular step. In case of redownloading file would just use existing file, in case off missing
data it would be omitted. Not only errors are more transparent to user, but also user may
use Aligenqa with wider variety of input data (at least to a degree).

3.4 Adding new particle
While preparing output Aligenqa only searches for particular data, that is programmed in
its code. In order for it to export data it needs to be added inside script file plotting.py.
However while adding support for any particle is easy it requires this data to be included in
supplied input file.

8

3.5 Modification of AliEn software
In order to supply Aligenqa with proper data I needed to modify existing AliEn software.
Adding new particle into simulation requires editing its config file (and inclusion of that par-
ticle’s parameters). However it would affect only raw output, AliEn software later performs
operations on that data. In order to add support for new particles in those operations AliEn
software code needs to be modified.

Main macro that needs to be modified in order to include partice support is easy to
locate (as even Aligenqa documentation briefly mentions it). However that macro passes
it’s arguments into other macros. I’ve spent over a week trying to pinpoint function that is
responsible for those data operations, unfortunatelly without success. Each change in code
I made was followed by me running simulation in order to check whether my modifications
were sufficient. Because of time constraints it was not possible to finish this part.

3.6 Summary
I was not able to fully test my modification of Aligenqa, because of lack of proper input
data. However I have documented my findings and left simulation data for future usage in
projects TWiki page [6]. This way if anyone would continue that project, this person has
some grounds for furher work.

9

4 Conclusion
During my internship I have worked on software for benefit of other scientists. My script
for working environment of ROOT and Therminator2 fulfills its objective, other people can
set their working environments with minimal workload. Moreover a group of students were
instructed how to use that software and did not need to guess which parts of its long manual
are important for their work.

Aligenqa software was improved, now it works more reliably. Moreover if error happens
within its execution - user will receive more verbose information on what caused it.

Part of AliEn software responsible for data generation for AliGenQA was (within time
constraints) examined. Addition of new particles was partially solved. Furthermore effects
of my work were documented and left for future usage at project’s TWiki page [6].

10

5 References
1. Mikolaj Chojnacki, Adam Kisiel, Wojciech Florkowski, Wojciech Broniowski, THER-

MINATOR 2: THERMal heavy IoN generATOR 2, https://arxiv.org/abs/1102.
0273

2. Bash Reference Manual, https://www.gnu.org/software/bash/manual/html_node/
index.html

3. ROOT v6.14 Reference Manual, https://root.cern.ch/doc/v614/

4. AliGenQA’s README.MD file

5. CERN Building ALICE software: ALICE Analysis Tutorial

6. Aleksander Szpakiewicz-Szatan Software development for MC data analyzing, http:
//nica.fizyka.pw.edu.pl/do/view/Main/TeFeNica45

11

https://arxiv.org/abs/1102.0273
https://arxiv.org/abs/1102.0273
https://www.gnu.org/software/bash/manual/html_node/index.html
https://www.gnu.org/software/bash/manual/html_node/index.html
https://root.cern.ch/doc/v614/
http://nica.fizyka.pw.edu.pl/do/view/Main/TeFeNica45
http://nica.fizyka.pw.edu.pl/do/view/Main/TeFeNica45

6 Acknowledgements
I would like to thank my supervisor Mgr inż. Krystian Rosłon for giving me oppurtunity
to work with his team and for his help. I would like to thank mgr inż. Marek Peryt for
organisation of work of NICA Group that I have cooperated with and for all help I have
received from him.

I would like to thank Joint Institute for Nuclear Research for allowing students such as
me to take part in this internship and work within it’s facilities. My internship here was
great experience during which I have met awesome people and have broadened my horizons.
Moreover I would like to thank Intitute for it’s financial support without which participation
in Summer Student internship would be severly impeded.

I would like to thank the Organising Committee: Elena Karpova, Elizabeth Tsukanova
and Julia Rybachuk for their hard work and patience. Their help made it possible for me
(and other students) to participate in this program.

I would also like to thank PhD Alexey Aparin for his cooperation, dr Łukasz Kamil
Graczykowski for his help with creation of CERN account and Ms Susanna Safarova for her
involvment during Russian language lessons.

12

7 Appendix - script’s code with comments
#!/ bin / bash

##
Install ROOT and Therminator2 on Debian 9 or Ubuntu 14 ,16 ,17 ,18
Author : Aleksander Szpakiewicz - Szatan
04.07.2018
contact : aleksander . szsz@gmail . com

##

##
Constants and Variables preparation

Constants
DOC="--manual" # command line switch to request manual compiltaion
SUP_OS="--list -supported -systems" # command line switch to request printing list of

operating systems
SHOWHELP="-h" # command line switch to request showing help
DEBIAN="debian" # codename for Debian
UBUNTU="ubuntu" # codename for Ubuntu
TEMP_DIR="/tmp" # temporary directory for ROOT install
ROOT_TARGET="/usr/local" # install directory for ROOT
THERMINATOR2_TARGET="/opt" # install directory for Therminator2 (it is

installed in its subfolder)
START_DIR=‘pwd ‘ # remember start working directory (to get back to

it later)

#####################################
TABLE OF EXIT CODES
NO_ERROR =0
SETUP ERRORS

WRONG_PARAMETERS =1
UNSUPPORTED_OS =2
UNDETECTED_OS =3
NON_ROOT_USER =4

PREPARATION ERRORS
APT_GET_UPDATE_FAIL =10
APT_GET_INSTALL_FAIL =11
APT_GET_DOXYGEN_FAIL =12
CANNOT_CREATE_INSTALL_DIR =13

ROOT ERRORS
CANNOT_DOWNLOAD_ROOT =20
ROOT_INST_FAIL =21
ROOT_NOT_INSTALLED_PROPERLY =22

THERMINATOR2 ERRORS
THERMINATOR2_INST_FAIL =30
THERMINATOR2_DOXY_FAIL =31

####################################

TABLE OF ROOT VERSIONS FOR VARIOUS OS VERSIONS
SOURCE_INSTALL="root_v6 .14.00. source.tar.gz"
UBUNTU_18="root_v6 .14.00. Linux -ubuntu18 -x86_64 -gcc7 .3.tar.gz"
UBUNTU_17="root_v6 .14.00. Linux -ubuntu17 -x86_64 -gcc7 .2.tar.gz"
UBUNTU_16="root_v6 .14.00. Linux -ubuntu16 -x86_64 -gcc5 .4. tar.gz"
UBUNTU_14="root_v6 .14.00. Linux -ubuntu14 -x86_64 -gcc4 .8.tar.gz"

DISTRO=‘awk "/^ID/␣{print␣$2}" /etc/os -release ‘ # get OS ID from /etc /os -
release

DISTRO=${DISTRO# *=} # remove prefix ending with
’=’

DISTRO=‘echo $DISTRO |awk ’{print $1;}’‘ # get first word from string
OS_VERSION=‘awk "/^ VERSION_ID/␣{print␣$2}" /etc/os-release ‘ # get OS verion from /etc /os

- release

13

OS_VERSION=${OS_VERSION# *\"} # remove prefix ending with
’"’

OS_VERSION=${OS_VERSION %.*} # remove suffix starting
with ’.’

##
Checking CLI parameters

Show help if user wants it (or doesn ’t know how to use this script)
if [[$1 == $SHOWHELP || $# > 1]]; then

echo "Usage␣$0␣\[$SHOWHELP \|$DOC\]"
echo "This␣script␣will␣install␣ROOT␣in␣/usr/local␣and␣Therminator2␣in␣/opt"
echo "The␣script␣need␣to␣be␣run␣with␣root␣privilages."
echo "$DOC␣-␣additionally␣install␣doxygen␣and␣compile␣Therminator2␣documentation"
echo "$SUP_OS␣-␣show␣list␣of␣supported␣OSes."
echo "$SHOWHELP␣-␣shows␣text␣above."
if [[$1 == $SHOWHELP]]; then # if user asked for help it was desired

exit $NO_ERROR # so return " NO_ERROR "
else

exit $WRONG_PARAMETERS # else return " ERROR " as it was not desired
action

fi
fi

Show list of supported OSes
if [[$1 == $SUP_OS]]; then

echo "Supported␣OSes:"
echo "Debian␣9␣(Stretch)"
echo "Ubuntu␣18.x"
echo "Ubuntu␣17.x*"
echo "Ubuntu␣16.x*"
echo "Ubuntu␣14.x*"
echo "*␣-␣not␣tested ,␣but␣supposed␣to␣work."
exit $NO_ERROR # return NO_ERROR

fi

Is it supported Distro ?
if [["$DISTRO" == "$DEBIAN"]]; then #If Debian - treat as Debian 9

ROOT_FILE="$SOURCE_INSTALL"
if [["$OS_VERSION" != "9"]]; then #If not Debian , but not 9 - warn user

echo "Warning ,␣script␣tested␣only␣on␣Debian␣9␣(Stretch)␣version." >&2
fi

elif [["$DISTRO" == "$UBUNTU"]]; then #If Ubuntu - check for versions
if [["$OS_VERSION" == "18"]]; then

ROOT_FILE="$UBUNTU_18"
elif [["$OS_VERSION" == "17"]]; then

ROOT_FILE="$UBUNTU_17"
elif [["$OS_VERSION" == "16"]]; then

ROOT_FILE="$UBUNTU_16"
elif [["$OS_VERSION" == "14"]]; then

ROOT_FILE="$UBUNTU_14"
else

echo "Unsupported␣Ubuntu␣version."
echo "Supported␣versions␣are␣14.x,16.x,␣17.x␣and␣18.x."
echo "Your␣is:␣$OS_VERSION."
echo "This␣script␣was␣designed␣to␣on␣Debian␣9␣and␣those␣Ubuntu␣versions␣only

.␣"
echo "You␣may␣modify␣it␣to␣run␣on␣other␣distros ,␣but␣I␣can ’t␣guarantee␣it␣

will␣work␣(or␣be␣optimal)."
exit $UNSUPPORTED_OS # return ERROR - it ’s

unsupported version of Ubuntu
fi

else
echo "Your␣OS␣is␣neither␣Debian␣or␣Ubuntu ,␣it␣is:␣$DISTRO."
echo "This␣script␣was␣designed␣to␣run␣on␣Debian␣or␣Ubuntu␣only.␣"

14

echo "You␣may␣modify␣it␣to␣run␣on␣other␣distros ,␣but␣I␣can ’t␣guarantee␣it␣will␣work␣
(or␣be␣optimal)."

exit $UNDETECTED_OS # return ERROR - it ’s
undetected OS

fi

format ROOT_VERSION variable
ROOT_VERSION=${ROOT_FILE#*v} # remove prefix ending with ’v’
if [["$ROOT_FILE" == "$SOURCE_INSTALL"]]; then # if using source install (like in

Debian 9)
ROOT_VERSION=${ROOT_VERSION %.s*} # remove suffix starting with ’.s’

else # if using pre - compiled Ubuntu
binary

ROOT_VERSION=${ROOT_VERSION %.L*} # remove suffix starting with ’.L’
fi

Does user have root privilages ?
if ! [$(id -u) = 0]; then

echo "The␣script␣need␣to␣be␣run␣with␣root␣privilages." >&2
echo "Run␣$0␣$SHOWHELP␣to␣get␣help." >&2
exit $NON_ROOT_USER # return ERROR - user does not have

root privilages
fi

Get username of user
if [$SUDO_USER]; then # if user is sudoer

REAL_USER=$SUDO_USER # check for his real login from sudo
else # else

REAL_USER=$(whoami) # use whoami
fi

source /root/. bashrc # use root ’s . bashrc (just to be sure that all enviromental
variables are OK

Get location of user ’s home directory using passwd
HOMEDIR=$(getent passwd "$REAL_USER" | cut -d: -f6)

Get number of CPU logical cores
CORES=‘getconf _NPROCESSORS_ONLN ‘

Does user want help files ?
if [[$1 == $DOC]]; then

MANUAL="1"
else

MANUAL="0"
fi

##
Prerequisities :
Update apt database
echo "==="
echo "ROOT␣and␣Therminator2␣have␣some␣dependencies.␣First␣let ’s␣update␣your␣database."
apt -get update

if [$? -ne 0]; then # did error occur in apt - get update ?
echo "Cannot␣update␣apt␣database.␣Check␣your␣internet␣connection.␣Is␣other␣process␣

using␣application␣database?"
exit $APT_GET_UPDATE_FAIL # return ERROR - apt - get update

problem
fi

Get dependencies
echo "You␣need␣C++␣compiler ,␣cmake ,␣git␣and␣some␣minor␣utilities␣and␣need␣some␣dev␣libraries

␣(with␣headers␣etc):"
apt -get install -y git dpkg -dev cmake g++ gcc binutils libx11 -dev libxpm -dev libxft -dev

15

libxext -dev libpng -dev libjpeg -dev python python -dev libtbb -dev

if [$? -ne 0]; then # did error occur in apt - get install ?
echo "Cannot␣install␣required␣libs.␣Check␣your␣internet␣connection.␣Is␣other␣process

␣using␣application␣database?"
exit $APT_GET_INSTALL_FAIL # return ERROR - apt - get install

problem
fi

Get doxygen (if user want manual)
if [["$MANUAL" == "1"]]; then

echo "For␣documentation␣you␣need␣doxygen."
apt -get -y install doxygen

fi

if [$? -ne 0]; then # did error occur in installing doxygen ?
echo "Cannot␣install␣doxygen.␣Check␣your␣internet␣connection.␣Is␣other␣process␣using

␣application␣database?"
exit $APT_GET_DOXYGEN_FAIL # return ERROR - doxygen

installation
fi

if [! -d "$THERMINATOR2_TARGET"]; then
echo "Directory␣$THERMINATOR2_TARGET␣does␣not␣exist."
echo "Creating␣$THERMINATOR2_TARGET."
mkdir $THERMINATOR2_TARGET
if [$? -ne 0]; then # did error occur in creating install directory ?

echo "Could␣not␣create␣direcotry␣$THERMINATOR2_TARGET"
exit $CANNOT_CREATE_INSTALL_DIR # return ERROR - could not create

install directory (nor it exists)
fi

fi
cd $TEMP_DIR

##
ROOT :
IS_ROOT=‘which root ‘ # check for existing ROOT installationion
if [-z "$IS_ROOT"]; then # if ROOT is not installed

Get ROOT
echo "==="
echo "Downloading␣ROOT␣version␣$ROOT_VERSION"
wget -N https :// root.cern.ch/download/$ROOT_FILE # download ROOT

archive , do not overwrite existing files if source is already downloaded (save
bandwidth)

if [$? -ne 0]; then # did error occur in downloading ROOT ?
echo "Unable␣to␣download␣ROOT␣:("
exit $CANNOT_DOWNLOAD_ROOT # return ERROR - could not

download ROOT
fi

echo "Unpacking␣ROOT␣archive."
tar xzf $ROOT_FILE # unpack ROOT file

Choose the directory according to distro
if [["$ROOT_FILE" == "$SOURCE_INSTALL"]]; then

ROOT_DIR="root -$ROOT_VERSION" # in case of source install
else

ROOT_DIR="root" # in case of pre - compiled
install

fi
cd "$ROOT_DIR"

Compile on Debian
if [["$ROOT_FILE" == "$SOURCE_INSTALL"]]; then

echo "Creating␣directory␣for␣ROOT␣build." # prepare directory for ROOT

16

install
sudo -E -u $REAL_USER mkdir obj
cd obj
echo "Configuring␣ROOT␣installation."
sudo -E -u $REAL_USER cmake .. # compile with REAL_USER

privilages
echo "Compiling␣ROOT␣with␣use␣of␣all␣available␣CPU␣cores ,␣it␣may␣take␣a␣

while␣(~1h␣on␣i7␣4720HQ)."
echo "Take␣a␣break ,␣go␣for␣a␣walk␣or␣something ..."
cmake --build . --target install -- -j$CORES # compile and install ROOT

if [$? -ne 0]; then # did error occur in compilation or
installation of ROOT ?

echo "ROOT␣installation␣failed."
exit $ROOT_INST_FAIL # return ERROR - could not

compile / install
fi

cd ..
else
#In case of Ubuntu move ROOT to correct dir

echo "Installing␣ROOT␣in␣$ROOT_TARGET."
chmod -R o+r * # allow execution of ROOT

libraries
chown -R root:root *
cp -R -f * "$ROOT_TARGET" # copy files to ROOT_TARGET

directory
cd "$ROOT_TARGET"

fi

IS_ROOT=‘which root ‘ # check if ROOT is properly detected
if [-z "$IS_ROOT"]; then # if it isn ’t detected

echo "ROOT␣instalation␣failed␣(ROOT␣is␣not␣detected)."
exit $ROOT_NOT_INSTALLED_PROPERLY # return ERROR -

ROOT not properly installed
else

echo "ROOT␣instalation␣finished."
Clean up leftowers from temporary directory
echo "Cleaning␣up␣$TEMP_DIR."
rm -r $TEMP_DIR/root*

fi
else # if ROOT already installed - inform the user and skip it ’s installation

echo "ROOT␣already␣installed."
fi

##
Therminator2 :

Download Therminator2 :
cd "$THERMINATOR2_TARGET"
echo "==="
echo "Preparing␣directory␣for␣Therminator2"
mkdir therminator2
cd therminator2/
echo "Downloading␣latest␣version␣of␣Therminator2"
wget -N http :// therminator2.ifj.edu.pl/therminator2 -latest.tar.gz # download

Therminator2 archive , do not overwrite existing files if source is already downloaded (
save bandwidth)

tar xzf therminator2 -latest.tar.gz # unpack
Therminator2 files

Fix a bug in source code (by inserting missing line of code)

17

echo "Adding␣missing␣line␣\"using namespace std;\"␣in␣therm2_events.cxx"
FILE=’./build/src/therm2_events.cxx ’
sed -i ’/main/ i using namespace std;’ $FILE # look for line containing keyword main (int

main ()) and insert " using namespace std ;" just above it

Fix bugs in Makefile (by replacing three lines that contain wrong order of parameters and
by ommiting lines providing Latex doxygen support)

FILE1=’./Makefile ’
FILE2=’./ Makefile.tmp ’
FROM=’$(LD) $(LFLAGS) $^ -o $@ ’
TO=’$(LD) $^ -o $@ $(LFLAGS)’
echo "Correcting␣errors␣in␣$FILE␣from:"
echo "$FROM"
echo "to:"
echo "$TO"
mv $FILE1 $FILE2
sed -n ’1,118p’ $FILE2 >> $FILE1
printf ’\t%s\n’ "$TO">>$FILE1
sed -n ’120,122p’ $FILE2 >> $FILE1
printf ’\t%s\n’ "$TO">>$FILE1
sed -n ’124,126p’ $FILE2 >> $FILE1
printf ’\t%s\n’ "$TO">>$FILE1
echo "Disabling␣buggy␣Latex␣support␣in␣$FILE."
sed -n ’128,141p’ $FILE2 >> $FILE1
sed -n ’144,146p’ $FILE2 >> $FILE1
sed -n ’148,169p’ $FILE2 >> $FILE1
rm $FILE2

Compile Therminator2
echo "Compiling␣Therminator2 ,␣it␣shouldn ’t␣take␣more␣than␣2-3␣minutes."
make -j $CORES

if [$? -ne 0]; then # did error occur in Therminator2 compilation ?
echo "Therminator2␣compilation␣failed."
exit $THERMINATOR2_INST_FAIL # return ERROR - Therminator2 compilation

failed
fi

Compile Therminator2 documentation
if [["$MANUAL" == "1"]]; then

echo "Compiling␣documentation␣for␣Therminator2"
make doc -j $CORES

fi

if [$? -ne 0]; then # did error occur in Therminator2 ’s documentation compilation ?
echo "Therminator2 ’s␣documentation␣compilation␣failed."
exit $THERMINATOR2_DOXY_FAIL # return ERROR - Therminator2 ’s

documentation compilation failed
fi

THERMINATOR2_PATH=‘pwd ‘ # Get Therminator2 path

cd "$THERMINATOR2_TARGET" # Return to directory where user started
script

chown -R $REAL_USER:$REAL_USER "therminator2" # change ownership of Therminator2 directory
(and files) to non - root user

##
Finish :
echo "==="
echo "To␣run␣ROOT␣just␣type␣\"root\"␣in␣terminal."
echo "To␣get␣info␣how␣to␣use␣Therminator2␣run␣\"$THERMINATOR2_PATH/runall.sh -h\"."
echo "Thank␣you␣for␣using␣this␣script."

18

exit $NO_ERROR # return NO_ERROR

19

	Abstract
	Therminator2 setup
	What is Therminator2
	Main depencency - ROOT
	Problems related to Therminator2 setup
	Solution to problems
	Summary

	Implementing new particles to Aligenqa
	What is Aligenqa
	Setup of environment
	Usage of Aligenqa
	Adding new particle
	Modification of AliEn software
	Summary

	Conclusion
	References
	Acknowledgements
	Appendix - script's code with comments

