

Flerov laboratory of nuclear reactions

FINAL REPORT ON THE SUMMER STUDENT PROGRAM

Calculation of energy losses of ions ${ }^{50} \mathrm{Ti}$ and nuclei ${ }^{290}$ Lv in DGFRS

Supervisor:

Dr. Vladimir Klimentievich Utyonkov

Student:
Dmitriy Solovyev, National Research Nuclear University MEPhl

Participation period:
July 10 - August 20

Dubna, 2017

Abstract

Synthesis and study of decay properties of superheavy nuclei meet significant experimental difficulties owing to extremely low cross sections of their formation in heavy-ion fusion reactions. Energy losses calculations of colliding nuclei are necessary for planning and performing experiments of such kind.

\section*{Introduction}

In the past years series of experiments with use of complete-fusion reactions $\left({ }^{48} \mathrm{Ca}+{ }^{233,238} \mathrm{U},{ }^{237} \mathrm{~Np},{ }^{239,240,242,244} \mathrm{Pu},{ }^{243} \mathrm{Am},{ }^{245,248} \mathrm{Cm},{ }^{249} \mathrm{Bk}\right.$, and $\left.{ }^{249} \mathrm{Cf}\right)$ have been performed at the Flerov Laboratory of Nuclear Reactions employing the Dubna GasFilled Recoil Separator (DGFRS). These experiments were aimed at reaching the island of stability of superheavy elements [1,2] with the center at the proton number $\mathrm{Z}=114$ and neutron number $\mathrm{N}=184$ that has been predicted within various macroscopic-microscopic models. The observed trend of nuclear properties of the superheavy elements provides evidence of the existence of the island of stability on the approach to the spherical closed neutron shell $\mathrm{N}=184$.

The heaviest elements up to $\mathrm{Z}=118(\mathrm{Og})$ which could be synthesized in the reactions with ${ }^{48} \mathrm{Ca}$ have been already produced by now. It is expected that superheavy elements 119,120 could be synthesized in fusion reactions of actinide isotope nuclei with ions heavier than ${ }^{48} \mathrm{Ca}$, e.g., with ${ }^{50} \mathrm{Ti},{ }^{54} \mathrm{Cr},{ }^{58} \mathrm{Fe}$, and ${ }^{64} \mathrm{Ni}$. It is well known that the compound-nucleus formation cross section strongly decreases with increasing $\mathrm{Z}_{1} \times \mathrm{Z}_{2}$ ($\mathrm{Z}_{1,2}$ are the atomic numbers of the colliding nuclei). For estimating the scale of this decrease, the experiment was proposed to synthesize the already known superheavy nuclei in the reaction ${ }^{244} \mathrm{Pu}\left({ }^{50} \mathrm{Ti}, 4 n\right){ }^{290} \mathrm{Lv}$.

Calculation of energy losses of ${ }^{50} \mathrm{Ti}$ allows to optimize the energy of accelerated ions in order to reach the highest cross section of the complete-fusion reaction. Also it allows to calibrate the high energy signals arising in the detectors. From calculation of energy losses of the heavy recoil nuclei in the DGFRS media we can estimate efficiency of the detector for registering α particles.

Fig. 1. Principle scheme of DGFRS.

Calculation algorithm

For calculations we used tables [3,4] that give particle range (R) depending on the respective energy (E) of the particles. We used linear interpolation between the closest points of $\mathrm{R}(\mathrm{E})$.

Algorithm of calculation:

1. Determine the interval corresponding to the input energy
2. Calculate the coefficient of proportionality between E and R for this interval and calculate R
3. Deduct thickness of material from R and find new value of energy.

This algorithm was realized in form of Python program.

Fig.2. Example of $R(E)$ dependence, R in $\mathrm{mg} / \mathrm{cm}^{2}$, E in MeV .

Input data

Calculations were performed for three different input energies of ${ }^{50} \mathrm{Ti}$ beam: $334 \mathrm{MeV}, 334.5 \mathrm{MeV}$, and 335 MeV . Thicknesses of all materials are given in Table 1.

Table 1. Thickness of materials.

For ${ }^{50} \mathrm{Ti}$		For ${ }^{290} \mathrm{Lv}_{116}$	
Material	Thickness, mg/cm ${ }^{2}$	Material	Thickness, mg/cm ${ }^{2}$
Ti	0.705	Pu	0.2
H	0.0053	O	0.0262
Al	2.37	H	0.0082
Ti	0.7180	H	0.0328
Pu	0.2	My	0.2040
O	0.0262	CH	0.2861
Pu	0.2		
O	0.0262		
H	0.0082		
H	0.0328		
My	0.2040		
CH	0.2861		

Results

Reaction ${ }^{244} \mathrm{Pu}\left({ }^{50} \mathrm{Ti}, 4 n\right){ }^{290} \mathrm{Lv}, \mathrm{P}[\mathrm{H}]=1.0, \mathrm{P}[\mathrm{P}]=1.6$ Torr Ranges and energies for ${ }^{50} \mathrm{Ti}$:
R_in dR R_out E_in dE E_out
$21.1990-0.7075=20.4915 \quad 334.0000-10.0024=323.9976 \mathrm{Ti}$
$4.94970-0.0053=4.94440$
$16.7514-2.3700=14.3814$
$17.6832-0.7180=16.9652$
$40.7593-0.2000=40.5593$
$12.1400-0.0262=12.1138$
$40.4966-0.2000=40.2966$
$12.0301-0.0262=12.0039$
$10.0657-0.0000=10.0657$
$3.76680-0.0082=3.75850$
$3.75850-0.0328=3.72570$
$10.3135-0.2040=10.1095 \quad 265.5623-4.15800=261.4043 \mathrm{My}$
$8.32770-0.2861=8.04160 \quad 261.4043-6.81580=254.5886 \mathrm{CH}$
Ranges and energies for ${ }^{290} \mathrm{Lv}$:
R_in dR R_out E_in dE E_out
$5.64560-0.2000=5.44560 \quad 45.2297-1.84530=43.3844 \mathrm{Pu}$
$1.58830-0.0262=1.56210 \quad 43.3844-1.00100=42.3834 \mathrm{O}$
$1.22530-0.0000=1.22530 \quad 42.3834-0.00000=42.3834 \mathrm{C}$
$0.47390-0.0082=0.46570 \quad 42.3834-1.15250=41.2309 \mathrm{H}$
$0.46570-0.0328=0.43280 \quad 41.2309-4.60530=36.6256 \mathrm{H}$
$1.11080-0.2040=0.90680 \quad 36.6256-8.65650=27.9691 \mathrm{My}$
$0.74190-0.2861=0.45570 \quad 27.9691-12.5108=15.4583 \mathrm{CH}$
0.6770 Si

Ranges and energies for ${ }^{50} \mathrm{Ti}$:	
R_in dR R_out	E_in dE E_out
$1.2345-0.7075=20.5270$	$334.5000-9.98610=324.5139 \mathrm{Ti}$
$4.96110-0.0053=4.95580$	$324.5139-0.23970=324.2742 \mathrm{H}$
$16.7816-2.3700=14.4116$	$324.2742-41.1858=283.0884 \mathrm{Al}$
$17.7188-0.7180=17.0008$	$283.0884-10.8989=272.1895 \mathrm{Ti}$
$40.8315-0.2000=40.6315$	$272.1895-1.53500=270.6545 \mathrm{Pu}$
$12.1703-0.0262=12.1441$	$270.6545-0.48090=270.1736 \mathrm{O}$
5689-0.2000 $=40.3689$	$270.1736-1.53500=268.6386 \mathrm{Pu}$
$12.0603-0.0262=12.0341$	$268.6386-0.48090=268.1577 \mathrm{O}$
$10.0896-0.0000=10.0896$	$268.1577-0.00000=268.1577 \mathrm{C}$
$3.77790-0.0082=3.76970$	$268.1577-0.40850=267.7492 \mathrm{H}$
㖪 $-0.0328=3.73690$	$267.7492-1.63230=266.1$
$10.3407-0.2040=10.1367$	$266.1169-4.15800=261.9590 \mathrm{My}$
$8.35100-0.2861=8.06490$	$261.9590-6.81580=255.1432 \mathrm{CH}$
Ranges and energies for ${ }^{290} \mathrm{Lv}$:	
R_in dR R_out	E_in
R $65570-0.2000=5.45570$	45.3228-1.84530 $=43.4775 \mathrm{Pu}$
$1.59080-0.0262=1.56450$	$43.4775-1.00100=42.4764 \mathrm{O}$
$1.22720-0.0000=1.22720$	$42.4764-0.00000=42.4764 \mathrm{C}$
$0.47450-0.0082=0.46630$	$42.4764-1.15250=41.3240 \mathrm{H}$
$0.46630-0.0328=0.43350$	$41.3240-4.60530=36.7186 \mathrm{H}$
$1.11260-0.2040=0.90860$	$36.7186-8.67570=28.0430 \mathrm{My}$
$0.74340-0.2861=0.45720$	$28.0430-12.5249=15.5181 \mathrm{CH}$
0.6794 Si	

Ranges and energies for ${ }^{50} \mathrm{Ti}$:
R_in dR R_out E_in dE E_out

```
21.2700-0.7075=20.5625 335.0000-9.97060=325.0294 Ti
4.97250-0.0053=4.96720 325.0294-0.23970 = 324.7896 H
16.8117-2.3700=14.4417 324.7896-41.1663=283.6233 Al
17.7543-0.7180=17.0363 283.6233-10.8802 = 272.7431 Ti
40.9037-0.2000=40.7037 272.7431-1.53500=271.2081 Pu
12.2005-0.0262 = 12.1742 271.2081-0.48090 = 270.7272 O
40.6410-0.2000=40.4410 270.7272-1.53500=269.1922 Pu
12.0905-0.0262 = 12.0643 269.1922-0.48090 = 268.7113 O
10.1134-0.0000 = 10.1134 268.7113-0.00000 = 268.7113 C
3.78910-0.0082=3.78080 268.7113-0.40850 = 268.3028 H
3.78080-0.0328=3.74800 268.3028-1.63230=266.6705 H
10.3679-0.2040=10.1639 266.6705-4.15800 = 262.5126 Му
8.37420-0.2861 = 8.08810 262.5126-6.81580=255.6968 CH
Ranges and energies for }\mp@subsup{}{}{290}\textrm{Lv
    R_in dR R_out E_in dE E_out
5.66570-0.2000=5.46570 45.4156-1.84530=43.5704 Pu
1.59320-0.0262 = 1.56700 43.5704-1.00100 = 42.5693 O
1.22900-0.0000 = 1.22900 42.5693-0.00000 = 42.5693 C
0.47520-0.0082=0.46700 42.5693-1.15250 = 41.4168 H
0.46700-0.0328=0.43410 41.4168-4.60530=36.8115 H
1.11450-0.2040=0.91050 36.8115-8.69470 = 28.1168 My
0.74490-0.2861=0.45880 28.1168-12.5390=15.5777 CH
0.6818 Si
```


Discussion

Energy losses of ${ }^{50} \mathrm{Ti}$ and recoil nuclei ${ }^{290} \mathrm{Lv}$ in DGFRS are calculated with use of tables [3,4]. This type of calculation is necessary for performing experiments on the synthesis of new superheavy nuclei. Next steps of calculations are aimed at estimating the charge of the produce heavy recoil nuclei in the separator media, simulation of particle trajectory through separator, and calibration of detectors.

REFERENCES

1.Super-heavyelement research. Yu.Ts. Oganessian and V.K. Utyonkov, Rep. Prog. Phys. 78, 036301 (2015).
2. Superheavy nuclei from ${ }^{48} \mathrm{Ca}$-induced reactions. Yu.Ts. Oganessian and V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015).
3. Range and stopping-power tables for heavy ions. L.C. Northcliffe and R.F. Schilling, Nuclear Data Tables A7, 233(1970).
4. Range and stopping-power tables for $2.5-500 \mathrm{MeV} /$ nucleon heavy ions in solids.
F. Hubert, R. Bimbot and H. Gauvin, Atomic Data and Nuclear Data Tables 46,No. 1, 1-213(1990).

