
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Veksler and Baldin laboratory of High Energy Physics

FINAL REPORT ON THE

SUMMER STUDENT PROGRAMM

Perfomance improvement of Ef software

with OpenMP and MPI

Supervisor:
Alexey Boytsov

Student:
Rogalev Kirill, Russia

Saint-Petersburg State
University

Participation period:
June 30 - August 16

Dubna — 2019

Contents

1 Abstract 3

2 Introduction 3
2.1 OpenMP and MPI . 3
2.2 CUSP library . 4

3 CG implementation 4
3.1 Jacobi and CG comparing . 4

4 MPI realization and testing 6

5 Conclusions 7

6 Acknowledgments 7

2

1 Abstract

Using OpenMP and MPI technlogies and CUSP numerical library we enhanced per-
fomance of the Ef software package - freeware software that is used for simulation of charged
particle dynamics. Instead Jacobi method for solving discrete Poisson equation conjugated
gradient method was implemented. It allows to perform complex parcticle-in-cell (PIC) calcu-
lations for EBIS modeling applications in acceptable amount of time.

2 Introduction

Electron beam ion sources (EBIS) are commonly used as sources of high charge ions
that are injects into a accelerator facility. EBIS sources are complicated enough, therefore com-
puter simulations of particle motion in them during work is necessary for their desiging. The
direct calculation of binary Coulomb interaction is almost impossible for significant number of
interacting particles, but PIC method solved this problem [1]. Shortly, instead of direct com-
putation of every binary interaction to evaluate result electric force on a particle PIC method
propose to substitute discrete set of charges {Qi}Ni=1 by continuous charge density distribution
ρ(r) and solve Poisson (in electrostatic approximation) equation ∆φ = −4πρ in SGS units. In
practice continuous charge density and Poisson equation are used in their disctretitized form
as:

φi−1,j,k − 2φi,j,k + φi+1,j,k

∆x2
+
φi,j−1,k − 2φi,j,k + φi,j+1,k

∆y2
+
φi,j,k−1 − 2φi,j,k + φi,j,k+1

∆z2
= −4πρi,j,k

(1)
where i, j, k indices correspond to x, y, z coordinate axes. One have to solve system of M linear
equations instead of system of N(N − 1)/2 equations in Coulumb case. Here M is the number
of points where potential is computed and N is total number of particles, which usually much
larger than M . The electric field in node points is calculated as a finite gradient of potential;
electric field between nodes is calculated as superposition of electric field values in adjacent
nodes with weight coefficients.

Computer programs using PIC are generally consist of two modules - field solver and
pusher. Field solver does previously discribed work. Pusher calculates values of electric and
magnetic fields at particle positions, defines resultant forces and changes particles positions and
velocities. In theory both of those modules are highly paralellizable. Our work related to such
computer program — Ef software [2], [3]. Ef is freeware software based on PIC method and
that is being developed by A. Yu. Boytsov and A. A. Bulychev. This software is required for
EBIS development.

The first part of this work was dedicated to realization CG method for field solver
module of Ef and comparing of efficiency of CG and Jacobi solvers. The second part was
much smaller and in fact related mainly to restore the code of parallelized pusher which was
implemented and deleted later. Also this paper presents the results of the simulations for
different numbers of OMP-threads and MPI-processes.

2.1 OpenMP and MPI

OpenMP and MPI technolgies are widely used in parallel computing applications.
OpenMP is an API that supports multi-platform shared memory multiprocessing in

programming C, C++ and Fortran. It allows to run application in several parallel threads that

3

have same memory space by default. User can make variables private to protect the code from
data race. In our programm OpenMP is used in both field solver and pusher. OpenMP can
engage all cores within one CPU but there is no way to use multiprocessor systems as clusters
with maximum efficiency. MPI helps to overcome this problem.

MPI is the standart of message passing between processes. Unlike OpenMP-threads
every MPI-process has their own memory space and data exchange is made through sending data
from one process to another. MPI-processes can occupy both different cores within one CPU
and different CPUs inside one computer system. Within every process OpenMP-parallelization
is permitted. In this way OpenMP-MPI bundle provides opportunity to use available resources
of supercomputer or computer cluster more rationally. In our programm MPI is used for pusher
realization.

2.2 CUSP library

CUSP is a library for sparse linear algebra based on Thrust — lower-level library
allows to speedup computations using CUDA on GPUs or OpenMP on CPUs (due to several
architecture features we decided to use CPU mode). CUSP contains several methods to solve
linear systems including Krylov methods (such as CG method and conjugate resudals method),
relaxation methods (Jacobi, Zeidel), e.t.c. All ones need is to construct the A matrix, allocate
x unknown vector, build b right-hand vector, set tolerance and choose a solving method.

3 CG implementation

Previously Jacobi method was used to solve discrete Poisson equation. The simplicity
of that method is it does not requires to built explicit linear system to solve but slow convergance
rate is price of it. The conjugate gradient method (CG) is free from this drawback but require
to built linear system Ax = b corresponds to equations (1), where A is Poisson matrix, x
is vector of potentials and b is right hand charge density vector. Luckily CUSP library has
realized CG method for linear systems, so direct implementation of CG is not needed. But
the constructing of matrix A for any more complicated solution area geometry than right
parallelogram is non-trivial task, and we spent significant amount of time to implement matrix
building algorithm.

3.1 Jacobi and CG comparing

To compare the efficiency of both methods we use model example where disk-shaped
emitter in free space (without external fields) ejects electrons with same momenta directed along
the disk axis. The simulation time was equal T = 3 · 10−9 s, time step was ∆t = 3 · 10−11 s, and
every 10 steps data was written to HDF5 file. The spatial distribution of electrons looked as
shown at figure 1.

4

Figure 1: Spatial distribution of electrons in model example

The grid size is 50× 50× 100 = 250000 nodes. Initial number of particles is 5000 and
it increase by 5000 every time step. The convergence criteria of the solver defined as:

r 0
||Axk − b||
||b||

(2)

where xk is the potential vector generated at k iteration, r is relative tolerance.
We conducted several simuations for both methods with different relative tolerance for

solver without parallelization. Their result are shown in table 1.

Relative Computation time, s
tolerance Jacobi method CG method

10−1 50± 2 21.3± 0.3
10−2 290± 10 42± 1
10−3 1080± 40 71.5± 0.5

Table 1: Comparation of programm execution time for Jacobi and CG methods

This simulations was performed on Intel Core i3-4005U 1.7 GHz machine.
Here we can see that conjugate gradient method works much faster than Jacobi at a

relatively high accuracy. It significantly reduce the amount of time which spent field solver

5

module of Ef during simulation. Now let’s look how good OpenMP helps to reduce it even
more.

We simulated the same example on the Intel Xeon E5-2680 v3 2.50 GHz machine with
6 cores and got following results:

Figure 2: Time of computations depending on the number of cores

4 MPI realization and testing

MPI is well suited for the pusher because most of operations on particles in PIC method
are well-parallizable and they are not require synchronization and interprocess data transmission
in contradicton to solver. Every MPI-process storages their own portion of particles (more
precisely, data related to those particles), pushes this particles using information about total
electromagnetic field, computes charge density distribution related with only this bunch of
particles. A single synchronization point is a summing of the charge densities to compute the
total field by the field solver at the next time step.

To test Open-MPI version of Ef we took modificated version of the example used in
section 3.1. The charge, mass and initial momentum of all particles was reduced by 10 times
and intensity of particle injection was increased by 10 times. It was made for to enlarge the
share of time that spends on the pusher work. We ran simulation with various numbers of
OpenMP-threads and MPI-processes and got following results.

The simulations was ran on the Hibrilyt claster at two nodes with two Intel Xeon Phi
E5-2695 v2 processor with 12 cores each.

6

Figure 3: Time of computations depending on the number of cores

Looking at this figure we can say that acceleration of program strongly depends on
how parallel branches of code are distributed between OpenMP-threads and MPI-processes.
Moreover, in case of single OpenMP-thread the programm begin to work slowly after 4 MPI-
processes. At the moment, we did not find an explanation for this.

5 Conclusions

Replacing the Jacobi field solver by CG field solver and returning MPI realization of
pusher we achivied the perceptable enhance of perfomance - now practical simulations may take
several days or weeks instead of months or years. However, now we can not explain the results
presented on the figures. Understending of them may help to increase perfomance more.

6 Acknowledgments

I am very grateful to the JINR ESIS group for their help and advice regarding this
project. Especially I would like to thank my supervisor Alexey Boytsov for consultations, trans-
fer of invaluable knowledge and personal excursion to the Nuclotron. Several computations were
held on the basis of the heterogeneous computing cluster HybriLIT (LIT, JINR). I would also
like to thank the organizers of the student summer program at JINR and AYSS for performing
of the wonderful educational program.

References

[1] Y.N. Grigoryev, V.A Vshivkov, M.P Fedoruk, Numerical ”Particle-in-Cell” Methods: The-
ory and Applications. (VSP, 2002)

[2] A.Yu. Boytsov, A.A. Bulychev, Ef: Software for Nonrelativistic Beam Simulation by
Particle-in-Cell Algorithm. EPJ Web of Conferences 177, 07002 (2018)

[3] E f (2017). Available at: https://github.com/epicf (accessed 15 August 2019).

7

