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Abstract

The influence of the Coriolis interaction on the N-odd Z-even heavy and super-heavy nuclei rotational
motion was investigated for isotones with N = 149:for the 243Pu, 245Cm, 247Cf, 249Fm, 251No, and 253Rf
isotopes .The underlying theoretical base was derived. The treatment of basic single-particle energies was
carried out in the framework of two-center shell model (TCSHM). For these isotones the corresponding
E2 transition probabilities were evaluated in order to reveal the Coriolis item influence.

1 Introduction

The investigation of heavy and super-heavy nuclei structure became a subject of a particular relevant interest
since the contemporary experimental techniques allowed to achieve an acceptable accuracy and to gain
related spectroscopic data. There are some distinguished points on the general investigation path to the
Island of stability – the isomeric states which,due to the long lifetimes, enable high-sensitively spectroscopic
measurements in order to investigate both these states and decay-related ones [12]. The isomeric states
and their population treatment reveals the crucial information on the related α−decay chains rather than
the ground states. Such long even directly measurable lifetimes are usually assumed to descend from the
combination of large angular momentum and low transition energy. As long as a nuclear rotation tend to
cause K mixing of both isomeric and ordinary states, the theoretical picture for these states and their lifetimes
which includes a mixing-causing addition (or a so called Coriolis interaction) is a grave frame for the heavy
nuclei structure insight.

Since this problem was first set for the realm of heavy and super-heavy nuclei the appropriate theoreti-
cal framework was required. The macroscopic approaches are well developed and capable of gross structure
description related to the collective nucleon motion. However they entirely omit some peculiar properties.
Hence the selected approach should take some shell concerned details. Such unification was successfully
developed in the microscopic-macroscopic approach. One if its most reliable and practical realizations for
heavy and super-heavy nuclei was chosen in the present paper in order to construct a numerical base. As it
was constructed to describe a wide variety of nuclear shapes during fission processes, its potential is split
over two separate fragments which correspond to the different nuclear fragments. This model effectively
reproduces the level spectra (spins and parities) with the respect to the internal model parameters. Therefore
the description of particular nuclei as a concern of parametrization setting.

As long as the up-to-date experimental facilities enable to obtain an information on the heavy and
super-heavy nuclei the theoretical results can be compared and jointly analyzed with the experimental
data. Such modern spectroscopic techniques as in-beam spectroscopy, isomer spectroscopy, and decay spec-
troscopy have significantly enriched the experimental base on N = 145, 147, ...157 including the chain of
N-odd Z-even isotones – 243Pu, 245Cm, 247Cf, 249Fm, 251No, and 253Rf [11]. The majority of spectroscopic
data on 245Cm were obtained via α−decay investigation [14, 15]. For 247Cf the experimental data [16] re-
vealed the 7/2+ spin-parity of ground state and it was recently proved by its α−decay on the excited 7/2+

state of 243Cm. The α−decay of the 253No ground state 9/2− allows to investigate the chain of decays of
the 9/2− excited states of 249Fm [17]. For the 251No isotope the spectroscopic data can be gathered both by
255Rf α−decay and m251No decay produced in heavy ions collisions [18]. However the 253Rf still one of the
least investigated, there are just a few data sets available for it [13]. This isotonic line possesses the isomeric
1/2+ state with a lifetime varying from 0, 29µs to 1, 02s due to 5/2+ level below.This state if of particular
interest in the scope of the Coriolis interaction.
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2 Theoretical framework
Since the isotopes under investigation are odd nuclei with odd N it is possible to apply microscopic-
macroscopic rotor+particle model which distinguishes a valence neutron for a separate treatment. The
equilibrium parameters of these nuclei ought to be evaluated via TCSHM application and the corresponding
single-particle spectra must be taken into account for further Coriolis interaction involving.

2.1 Particle-plus-rotor approach
An exceptionally collective motion of nucleons can approximately reveal the general picture of the nucleus
behavior in its vibrational or rotational motion. Single-particle features in a form of different transitions are
entirely omitted in the collective models,though they are responsible for the shell structure revelation. Both
of these models can be unified in order to consider single-particle and collective motion – the unified model
which allows to split a nucleus into an inert rigid core (or a rotor) and a bunch of valence particles [4]. The
elementary modification of this approach considers an odd nucleus and its division into an even-even inert
core with an angular momentum ~Jcore = 0 and a valence nucleon with ~J = ~Jnucleus. So one may define the
total angular momentum as:

~I = ~J + ~R, (1)

where ~R denotes the total collective mechanical momentum. Such a consideration allows to divide the total
Hamiltonian of this system into the intrinsic part which would correspond to the valence particle motion and
the collective part for the core [2]:

Htot = Hint + Hcol. (2)

As long as the collective part in the body-fixed system (1,2,3) is presented by:

Hcol =
R2

1

2Θ1
+

R2
2

2Θ2
+

R2
3

2Θ3
, (3)

where Θi are the intrinsic components of the moment of inertia. The Ri components can be easily excluded:

Hcol =
(I1 − J1)2

2Θ1
+

(I2 − J2)2

2Θ2
+

(I3 − J3)2

2Θ3
=

3∑
i=1

I2
i

2Θi
+

3∑
i=1

J2
i

2Θi
−

3∑
i=1

IiJi

Θi
=

= Hrot + Hrec + Hcor, (4)

where Hrot would correspond to the rotational movement of the core, Hrec is the recoil component
which would be automatically considered in the experimental values εi in Hint =

∑
i εia+

i ai. As long as
[Ix,y,z, I1,2,3] = 0, rotational symmetry is not violated in the laboratory system, but it may be violated in the
body-fixed one.

For the Hamiltonian the wave functions may be found in the form:

|ΨiI
M〉 =

∑
K

Φi
K |IMK〉 =

∑
K

|ΨiI
MK〉 , (5)

where Φi
K is the efficient for the valence particle and |IMK〉 is the rotational collective efficient which is

defined as the dependant on the Euler angles Ω normalized Wigner function:

|IMK〉 =

√
2I + 1

8π2 DI
MK(Ω) = N I DI

MK(Ω), (6)
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The assumption of axial symmetry (internal 3 axis is the symmetry axis) would lead to Θ1 = Θ2 = Θ,
R3 = 0, I3 = J3 = K, and the symmetrization must be considered as well:

|ΨiI
MK〉 = α1DI

MK(Ω)Φi
K + α2DI

M−K(Ω)Φi
−K , (7)

The rotation around both 2-axis and 1-axis in 3-axis symmetry case would lead to the same result,
hence only 1-axis rotation R1 can be considered by its dividing to the internal rotation R1

int (with the respect
to 1,2,3 frame) and general rotation R1

gen R1 = (R1
gen)−1R1

int [8]:

R1
genDI

MK(Ω) = (−1)I−K DI
M−K(Ω), (8)

(R1
gen)−1DI

MK(Ω) = (−1)I+K DI
M−K(Ω), (9)

R1
intΦ

i
K = γΦi

−K , γ = 1. (10)

So, the primary wave function may be rewritten as:

|ΨiI
MK〉 =

1
√

2
(1 + (R1

gen)−1R1
int)N

I DI
MK(Ω)Φi

K =
1
√

2
N I DI

MK(Ω)Φi
K+

+
1
√

2
(−1)I+K N I DI

M−K(Ω)Φi
−K . (11)

If the Coriolis component is insignificant relatively to the the single-particle energy gaps, the valence
particle follows the core rotations.The Coriolis contribution will be eliminated and the eigenvalues of the
reduced Hamiltonian Htot = Hint + Hrot will be:

(EiI
K)0 = εiIK +

1
2Θ

(I(I + 1) − K2). (12)

In order to apply the first order of perturbation theory it is rather convenient to modify the Coriolis compo-
nent:

Hcor = −

3∑
i=1

IiJi

Θi
= −

I1J1

Θ
−

I2J2

Θ
= −

(I+ + I−)(J+ + J−)
4Θ

−
(I+ − I−)(J+ − J−)

4Θ
=

= −
I+J− + I−J+

2Θi
(13)

Thus, the first order of perturbation theory provides us with:

(EiI
K)1 = (EiI

K)0 −
1

2Θ
〈ΨiI

MK |I+J− + I−J+|Ψ
iI
MK〉 , (14)

which will stay the same value as the zeroth order of perturbation theory if K , 1
2 , otherwise it would have

an additive item:
(EiI

K)1 = (EiI
K)0 −

1
2Θ

(−1)I+ 1
2 (I +

1
2

) 〈Φi
1
2
|J+|Φ

i
− 1

2
〉 , (15)

here 〈Φi
1
2
|J+|Φ

i
− 1

2
〉 the decoupling parameter. If the Coriolis component is not taken into account as a minor

addition, the wave function may be rewritten as:

|ΨiI
MK〉 =

∑
K

αI
MKΦi

K |KLM〉 , (16)
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Htot

∑
K

αI
MKΦi

K |KLM〉 = EI
M

∑
K

αI
MKΦi

K |KLM〉 , (17)∑
K

αI
MK 〈Ψ

iI
MK |Htot |Ψ

iI
MK′〉 = EI

Mα
I
MK′ , (18)

or in a matrix form: 
HK1K1 HK1K2 · · · HK1KN

HK2K1 HK2K2 · · · HK2KN

...
...

. . .
...

HKN K1 HKN K2 · · · HKN KN



αI

MK1

αI
MK2
...

αI
MKN

 = EiI
K


αI

MK1

αI
MK2
...

αI
MKN

 (19)

where K = 1
2 ,

3
2 , ... and the matrix elements HKnKm in the case of n = m are (for the detailed derivation see

Appendix A):

HKnKm =

εiIK + 1
2Θ

(I(I + 1) − K2), if n = m, K , 1
2

εiIK + 1
2Θ

(I(I + 1) − 1
4 ) − 1

2Θ
(−1)I+ 1

2 〈Φi
1
2
|J+|Φ

i
− 1

2
〉 , if n = m, K = 1

2

And in the case of n , m are:

HKnKm =


1
2

√
(I − K)(I + K + 1) 〈Φi

K |J−|Φ
i
K+1〉 −

1
2

√
(I − K)(I + K + 1) 〈Φi

−K |J+|Φ
i
−K−1〉 ,

if m = n + 1 or n = m + 1
0,
if m = n + δ or n = m + δ, δ ∈ Z, δ  2

The only parameter left for the further evaluation is a decoupling parameter which depends on the
internal coordinates including valence particle coordinates and, if the vibrations are assumed in general,
on the vibrational coordinates as well. Its sign and value denote the direction of a state shift and its scale
correspondingly. The positive decoupling parameter would cause the downward removal of I = 1/2, 5/2, ...
states.

2.2 The two center shell model
In order to represent the single-particle wave function Φi

K to calculate decoupling parameters the asymmetric
two center shell model [1] was used. This model enlarges the advantages and abilities of the Nilsson model
to obtain the separate nucleus fragments to describe the pre-fission state (or an excited deformed state with
no respect to fission). Its single-particle Hamiltonian can be rewritten in cylinder coordinates as:

Htc = −
~2∇2

2m0
+ V(ρ, z) + VLS (~r, ~p, ~s) + VL2 (~r,~l), (20)

where V(ρ, z) includes two-center-oscillator. Under some restrictions [1] the Shrödinger equation allows to
divide a single-particle wave function (with no spinor taken into account):

ψ(ρ, z, φ) = µ(z)χ(ρ)η(φ), (21)

where
η(φ) = ηm(φ) =

1
√

2π
eimφ = |m〉 ,
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χ(ρ) = χ|m|nρ (ρ) = N−1k
|m|+1

2
ρ e−

1
2 kρρ2

ρ|m|L|m|nρ (kρρ2) = |nρ〉 ,

µ(z) = |nz〉 =

N−1
z1

U(−nz1 −
1
2 ,−

√
2kz1 (z − z1) if z < 0

N−1
z2

U(−nz2 −
1
2 ,−

√
2kz2 (z − z2) if z > 0

.

Here L|m|nρ is a Laguerre polynomial, kρ =
m0ωρ
~

nρ, and U is a parabolic cylinder function.It would provide us
with a wave function form with a respect to the two-center-model quantum numbers m, nρ, nz:

ψ(ρ, z, φ) = |mnρnz〉 |s〉 , (22)

As long as the framework is presented in the cylinder coordinates the acting ladder operators J+ and
J− ought to be rewritten in the same coordinates as well:

J+ = zeiφ ∂

∂ρ
+ i

z
ρ

eiφ ∂

∂φ
− ρeiφ ∂

∂z
, (23)

J− = −ze−iφ ∂

∂ρ
+ i

z
ρ

e−iφ ∂

∂φ
+ ρe−iφ ∂

∂z
, (24)

Therefore the matrix elements 〈Φi
Ki
|J±|Φi

K j
〉 are in the form 〈m2nρ2 nz2 s2|J±|m1nρ1 nz1 s1〉. A separated

spin part 〈s2|s1〉 would provide with δs1 s2 . The angular parts in its explicit forms would are obtained as:

〈m2s2|J+|m1s1〉 = −~

[
(ρ
∂

∂z
− z

∂

∂ρ
) +

zm1

ρ

]
δs1 s2δm1m2−1, (25)

〈m2s2|J−|m1s1〉 = ~

[
(ρ
∂

∂z
− z

∂

∂ρ
) −

zm1

ρ

]
δs1 s2δm1m2+1, (26)

The explicit form of 〈m2nρ2 s2|J±|m1nρ1 s1〉 was derived as well. It is split to four different cases of m1 and
m2 relations: the first case would correspond to m1 ≥ 0, m2 = m1 + 1 (and with the opposite sign the second
case of m1 ≤ 0, m2 = m1 − 1):

〈m2nρ2 s2|J+|m1nρ1 s1〉 = −~[(
1√
kρ

∂

∂z
+ z

√
kρ)

√
nρ1 + |m1| + 1δnρ1 nρ2

+

+(
1√
kρ

∂

∂z
− z

√
kρ)
√

nρ1δnρ1 nρ2 +1]δs1 s2δm1m2−1, (27)

and for m1 ≥ 1, m2 = m1 − 1 (with the opposite sign for m1 ≤ −1, m2 = m1 + 1

〈m2nρ2 s2|J+|m1nρ1 s1〉 = ~[(
1√
kρ

∂

∂z
− z

√
kρ)

√
nρ1 + |m1| + 1δnρ1 nρ2

−

+(
1√
kρ

∂

∂z
+ z

√
kρ)
√

nρ1δnρ1 nρ2−1]δs1 s2δm1m2−1, (28)

The rest of procedures can be performed by the numerical calculations. Since two-center model allows
to vary deformation coefficient the wave functions appropriate for the current work would correspond to the
equilibrium deformation value.
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2.3 Equilibrium deformation in macroscopic-microscopic approach
The primary step made to describe a nucleus behavior under minor deformations is widely presented by the
liquid drop model. The Bethe-Weizsäcker mass formula serves as a rough base for the fission barrier esti-
mation and, therefore, it also ought to describe pre-fission states in general. However, appearances of such
particularities as deviations from the smooth mass dependence (especially double-humped fission barriers in
some isomers [9]) required taking larger deformations and shell effects (shell closures) into account.

Figure 1: Total binding energy versus deformation parameter β for the 243Pu, 245Cm, 247Cf, 249Fm, 251No
and 253Rf isotopes.

Since the shell model by itself does not describe binding energies and fails to describe the general
energy profile by considering motion of nucleons only in the vicinity of the Fermi energy, it was rather
convenient to combine both the liquid drop model and the shell model. Such unification was performed
by the Strutinski shell correction procedure [10]. It assumes this shell correction in a form of oscillatory
addition to be inserted in the liquid drop bunding energy:

Wtot = Wosc + WLDM . (29)

These oscillations are firmly related to the shell ans subshell closures appearances and have the maxima on
magic nuclei. This relation can also be enlarged if one operates in terms of shell model density levels. The
oscillations can be understood if the average level density which would be responsible of the smooth W̃sh is
introduced. Hence, the total energy can be presented as:
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Table 1: Selected properties of investigated isotopes obtained by using TCSHM.

Isotope

Parameter 243Pu 245Cm 247Cf 249Fm 251No 253Rf

βmin 0,285 0,287 0,289 0,293 0,289 0,277
(EF)n, MeV 49,674 49,544 49,417 49,299 49,149 48,966

∆n, MeV 0,469 0,464 0.459 0.471 0.469 0.472
Θodd, MeV−1 80,128 82,248 81,907 77,761 74,135
Θeven, MeV−1 67,355 69,824 68,181 65,217
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Figure 2: Spectra of neutron single-particle energies for the 243Pu, 245Cm, 247Cf, 249Fm, 251No and 253Rf
isotopes.

Wtot = WLDM + Wsh − W̃sh = WLDM + Wsh = WLDM +

λ∫
−∞

εg(ε)dε −

λ̃∫
−∞

ε ˜g(ε)dε, (30)
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where g(ε) and ˜g(ε) are level density and smoothed level densities. In the present paper TCSHM program in
f ortran was applied in order to calculate two-center single-particle states Φi

K at the equilibrium deformation
β. In its turn these deformations were previously determines as βmin which would correspond to the minima
of shell corrections dependencies versus deformation (see Figure 1) as these minima almost coincide with
those of total energy. The Fermi energies (EF)n, energy gaps ∆n for these isotopes were determined as well
(see Table 1). The spectra of single-particle energies with respect to the Fermi energy as a zero are presented
on Figure 2.

According to The Bardeen-Cooper-Schrieffer theory the single-particle configurations in odd systems
can be described in terms of the Bogolubov quasi-particles [2]. Therefore the single-particle spectra serve
as a canvas for the quasi-particles excitations. These excitation energies can be presented in the form:

εQ
k =

√
(εS P

k − EF)2 + ∆2, (31)

where εS P
k are single-particle energies obtained in the framework of TCSHM, ∆2 and EF used in the calcu-

lation are mentioned in Table 1.
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Figure 3: Spectra of neutron quasi-particle energies the 243Pu, 245Cm, 247Cf, 249Fm, 251No and 253Rf isotopes.
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3 Realization

Whole procedure of taking the Coriolis interaction into account was performed in Wolfram Mathematica
TCSHM program as an additional section (set of cells).

Since such essential parameters as A,Z,mass asymmetry, deformations of nuclear fragments, distance
to the center of the first and second fragments, parameters of the TCSHM potential (i.e. all required TC-
SHM model parameters) were initially inserted in the TCSHM program, the rest to be set were local frame
parameters as:

zero = A - Z
lim = -40
Inert = 67
J = 7/2
fin = 40

Where zero denotes the closest to the Fermi energy level,Inert is a moment of inertia,J is an I value, and
lim,f1 and fin are required to determine the number of levels under investigation below and above the Fermi
level:

H = Table[0, n1, 1, fin, n2, 1, fin];

Henceforth strv3[[]] denotes different wave components with the same K value and TCSHM energy en-
ergy0.Therefore the procedure (19) will be rewritten as:

Do[{ Do[{
K1 = Abs[strv3[zero + lim + 2*n1][[1, 4]] + strv3[zero +lim +2∗n1][[ 1, 5]]],
K2 = Abs[strv3[zero + lim + 2*n2][[1, 4]] + strv3[zero +lim +2∗n2][[ 1, 5]]],
N1 = zero + lim + 2*n1,
N2 = zero + lim + 2*n2,
If[(K1 > J)||(K2 > J), H[[n1, n2]] = energy0[[N1]] DF[N1, N2] + (J ∗ (J + 1) − (K1)2)/2/Inert∗DF[N1,
N2],{
If[K1 == K2, H[[n1, n2]] = energy0[[N1]] DF[N1, N2] + (J ∗ (J + 1) − (K1)2)/2/Inert*DF[N1, N2]+
(−1)(J + K1)∗MatTot[N1, N2 + 1] ∗ (−1/2/Inert) ∗ (J + 1/2)/2∗DF[K1, 1/2]+
(−1)(J + K1)∗MatTot[N1 + 1, N2] ∗ (−1/2/Inert) ∗ (J + 1/2)/2∗DF[K1, 1/2], None],

Here MatTot[] is 〈Φi
1
2
|J+|Φ

i
− 1

2
〉.

If[K2 − K1 == 1,
H[[n1, n2]] = Sqrt[(J + K2) ∗ (J−K1)]∗(MatTot[N2, N1] - MatTot[N1 + 1, N2 + 1]) ∗ (−1/2/Inert)/2, None],
If[K1 − K2 == 1,
H[[n1, n2]] = Sqrt[(J + K1) ∗ (J−K2)]∗(MatTot[N1, N2] - MatTot[N2 + 1, N1 + 1]) ∗ (−1/2/Inert)/2, None],
n2++}, {n2, 1, fin}], n1++}, {n1, 1, fin}]

Then the eigenvalues and eigenvectors are determined by:

{eng, vct} = Eigensystem[H];
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It is followed by the renormalization procedure (engN[[]] and vctN[[]] will be recalled by the same number
as energy0[[]]):

Hindex = Table[zero + lim + 2*n1, {n1, 1, fin}];
engN = Table[0, [n1, 1, Hindex[[Length[Hindex]]]{];
vctN = Table[ 0, {n1, 1, Hindex[[Length[Hindex]]]{, {n1,1,Hindex[[Length[Hindex]]]{;
Do[{engN[[Hindex[[n1]]]] = eng[[fin - n1 + 1]]} , {n1, 1, fin}]
Do[{vctN[[Hindex[[n1]]]] = vct[[fin - n1 + 1]]} , {n1, 1, fin}]

The different K-admixtures can be represented by their contributions with corresponding weight (in percent):

Nm = 149; Sum[ Chop[vctN[[Nm, k]], 0.01] f[zero + lim + 2 k, strv3[Hindex[[k]]][[1, 4]], strv3[zero +
lim + 2 k[]]1, 5]]], {k, 1, Length[vctN[[Nm]]]}]

Energy of each level is recalled by:

engN[[]]

As the result of each run for the different I values one obtains the set of single-particle energies in the
vicinity of the Fermi energy for the selected isotone.

4 Results
In the frame of chosen theoretical approach the decopling factors (i.e. 〈Φi

1
2
|J+|Φ

i
− 1

2
〉)for each of isotones

were calculated and listed in Table 2.

Table 2: Decoupling factors of investigated isotopes obtained by using TCSHM.

Decoupling factors

243Pu 245Cm 247Cf 249Fm 251No 253Rf

-1,685 -1,683 -1,682 -1,679 -1,682 -1,689

As long as the internal structures of these nuclei are quite similar (that was also proved by the close
deformation parameters β) the corresponding decoupling factors do not vary significantly. They cause the
noticeable downward shift of 1

2
+ state (see Figure 4 and Figure 5) by 10-20 keV. Their values depend only

on the calculated by TCSHM wave functions, thus they do not reflect the the consequences of some moment
of inertia values deviations. However such deviations may be crucial for the general order of single-particle
states as the moment of inertia minimization evokes the Coriolis interaction amplitude increase. Figure 4 and
Figure 5 represent the spectra obtained for Θeven which correspond to the independent even-even core and
particle approach. Indeed, the mathematical background assumes them to be independent, so such choice
of Θ would correlate with underlying calculations. Still this assumption is far from the genuine nature and
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an another limit of rigidly bound core and particle was taken into account as well. Θodd were calculated on
the base of experimental ground state 7

2
+ band for the selected nuclei in contras to Thetaeven obtained for

the corresponding (Z,N − 1) nuclei. Since the experimental data on 251No and 253Rf are quite scarce the Θ

values were extrapolated by known values for lighter nuclei.
The less of more reliable criteria of proper Θ selection can be chosen on the base of calculated and

experimental bands comparison. For such procedure the ground state 7
2

+ band was selected as long as it
was measured in numerous experiments with an appropriate precision for super-heavy nuclei thus being
optimally reliable. These bands for the selected nuclei are plotted on Figure 6. The smooth non wave-like
(parabolic) behavior of those points to the weak Coriolis mixing for K = 7

2 . The experimental points fit
the calculated curves with a slight deviation in large I which might be eliminated by Θ selection. As the
reference fitting points I = 7

2 and I = 11
2 were selected. The approximate values of fitted Θ∗ are listed

in Table 3. These values imply that the internal structure of each nuclei is closer to the strong limit rather

Table 3: Moments of inertia of investigated isotopes.

Moments of inertia, MeV−1

243Pu 245Cm 247Cf 249Fm

77 79 78 76

than to the limit of independent constituents. However the blocking effect (as the way of taking pairing
into account directly) would probably cause the significant increase of moment of inertia. Thus the limit of
independent core and particle would approach that of the rigid system.

On the other hand, the 1
2

+ band is an object of particular interest as well since the Coriolis interaction
was predicted to influence significantly on it. These bands are presented on Figure 7 for all selected super-
heavy nuclei. The rotational parabolic behavior is disrupted by the Coriolis mixing, hence the serrated
behavior of each curve. The experimental data for the 1

2
+ band are not available for the majority of the

investigated nuclei. However even the available data (for 243Pu and 245Cm) are quite doubtful. For 243Pu
the experimental points for I = 3

2 and I = 5
2 reveal a reverse tendency as compared with the calculated one.

The actual essence of these states differ from those of pure 1
2

+ band components. These states may even
present a mixture of states with the corresponding quantum numbers. Almost the same can be traced for
the 245Cm isotope: the experiential data (red points, starting with 0,355 MeV) reveal ladder-like tendency
with no explicit maxima and minima. Moreover they disperse with the calculated ones over all range. Such
discrepancies allow us to doubt in experimental data pureness. But for the second 1

2
+ measured band (blue

points, starting with 0,740 MeV) these discrepancies are less significant, though the Coriolis mixing is still
reduced. This experimental band has an additional 1

2
− (0,913 MeV) band thus forming a doublet with it

typical for octopole deformation. Indeed such kind of deformation is ought to be inherent in the investigated
mass (A) range. As the result the week Coriolis effect and an absence of a doublet itself serve as reason for
considering 1

2
+ band to be first observed 1

2
+ rotational band, as the first one to be essentially misunderstood.

Probably it does actually contain the rotational band but rather based on 3
2

+.
Taking the Coriolis interaction into account would allow to obtain the probabilities of E2 transitions

from the 1
2

+ excited state to the 5
2

+ excited state as well. All underlying calculations are presented in Ap-
pendix B and the probabilities (s−1) themselves are taken as [3]:

T = 1, 223 ∗ 109E5 ∗ B(E2). (32)
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The lifetimes obtained for each isotone are listed in Table 4. Hence the 1
2

+ state in 249Fm has the largest

Table 4: E2 transition probabilities and 1
2

+ lifetimes for the investigated isotopes.

243Pu 245Cm 247Cf 249Fm 251No 253Rf

B(E2), e2fm4 0,821 0,715 0,754 0,644 0,890 0,738
lifetime, µs 0,35 0,46 0,51 1,12 0,34 0,16

lifetime mostly due to the narrowest energy gap between the initial and final states.This gap tend to increase
for 253Rf thus decreasing the lifetime. This 1

2
+ state for 253Rf is quite far from being the isomeric state as it

was predicted experimentally mostly due to the energy gap increase despite the increasing B(E2) value.

5 Conclusions
In the present paper the N-odd Z-even super-heavy nuclei such as 243Pu, 245Cm, 247Cf, 249Fm,251No, and
253Rf were investigated in the framework of rotor-plus-particle approach. As the intermediate step the two-
center shell model was used in order to obtain the single-particle spectra henceforth being converted to the
quasi-particle spectra.On the base of these spectra the Coriolis interaction was inserted to obtain the shifted
spectra and to trace the mixing of states (especially 1

2
+) due to this interaction. The calculated results were

compared with the experimental data and some conclusions on the reliability of experimental data were
made. The calculated data were used as the base for 1

2
+ lifetimes estimations. During this work I was

able to treat the macroscopic-microscopic in its actual applications to the real isotonic chain. The base of
TCSHM especially was studied as well. I have also received an experience of the mathematical realization
of theoretical framework via the technical facilities. This project is about to be continued and extended on
other isotonic chains with blocking effect and surface vibrations taken into account.
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Figure 6: K = 7/2+ band for 243Pu, 245Cm, 247Cf, 249Fm, 251No and 253Rf isotopes.
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Figure 7: K = 1/2+ band for 243Pu, 245Cm, 247Cf, 249Fm, 251No, and 253Rf isotopes.
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A Matrix elements HKiK j and decoupling parameter
In order to obtain matrix elements of the Hamiltonian:

H = Hintr +
I2 − K2

2Θ
−

I+J− + I−J+

2Θ
(A.1)

one ought take into account orthogonality of Wigner functions and[3]

I±DI
MK(Ω) =

√
(I ± K)(I ∓ K + 1)DI

MK∓1(Ω). (A.2)

Thus, for diagonal elements Ki = K j = K one will receive:

〈

√
2I + 1
16π2

(
DI

MK(Ω)Φi
K + (−1)(I + K)DI

M−K(Ω)Φi
−K

)
|H|

√
2I + 1
16π2

(
DI

MK(Ω)Φi
K + (−1)(I + K)DI

M−K(Ω)Φi
−K

)
〉 =

= ε I
K +

I(I + 1) − K2

2Θ
+

1
2

(
−

1
2Θ

) (
2I + 1

8π2

) √
(I + K)(I − K + 1)(〈DI

MK |D
I
MK−1〉 〈Φ

i
K |J−Φ

i
K〉+

+(−1)I+K 〈DI
MK |D

I
M−K+1〉 〈Φ

i
K |J+Φi

−K〉+(−1)I+K 〈DI
M−K |D

I
MK−1〉 〈Φ

i
−K |J−Φ

i
K〉+〈D

I
M−K |D

I
M−K+1〉 〈Φ

i
−K |J+Φi

−K〉)+

1
2

(
−

1
2Θ

) (
2I + 1

8π2

) √
(I − K)(I + K + 1)(〈DI

MK |D
I
MK+1〉 〈Φ

i
K |J+Φi

K〉 + (−1)I+K 〈DI
MK |D

I
M−K−1〉 〈Φ

i
K |J−Φ

i
−K〉+

+ 〈DI
M−K |D

I
M−K−1〉 〈Φ

i
−K |J−Φ

i
−K〉 + (−1)I+K 〈DI

M−K |D
I
MK+1〉 〈Φ

i
−K |J+Φi

K〉). (A.3)

The only value of K which would provide us with nonzero items is K = 1
2 (K = −K + 1 and −K = K − 1

combinations, K has positive sign). So, HKK will be reduced for K , 1
2 :

HKK = ε I
K +

I(I + 1) − K2

2Θ
, (A.4)

And for K = 1
2 :

HKK = ε I
K +

I(I + 1) − K2

2Θ
+

1
2

(
−

1
2Θ

(
I +

1
2

)
[
〈Φi

K |J+|Φ
i
−K〉 + 〈Φ

i
−K |J−|Φ

i
K〉

]
. (A.5)

For HKK+1 case one obtain:

2I + 1
16π2 〈D

I
MK(Ω)Φi

K + (−1)(I + K)DI
M−K(Ω)Φi

−K |H|D
I
MK+1(Ω)Φi

K+1 + (−1)(I + K + 1)DI
M−K−1(Ω)Φi

−K−1〉 .

Here the only combinations which leave nonzero items are K = K and −K = −K (the first part of these
equalities is from bra vector, the latter would correspond to ket vector). Thus:

HKK+1 =
1
2

(
1

2Θ

) √
(I + K + 1)(I − K)

[
〈Φi

K |J−|Φ
i
K+1〉 − 〈Φ

i
−K |J+|Φ

i
−K−1〉

]
. (A.6)

Exactly the same result will be symmetrically obtained for HK+1K as long as it provides with two nonzero
combinations K +1 = K +1 and −K−1 = −K−1. For the rest of Ki and K j combinations in matrix elements
these K will be zero or negative and since K is positive the corresponding matrix elements will be HKiK j = 0.
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B Matrix elements of Q2µ operator and B(E2)

Nuclear surface vibrations can be represented in the following form (laboratory system)[2]:

R(θ, φ, t) = R0

1 +
∑
λ,µ

(−1)µαλ−µ(t)Yλµ(θ, φ)

 . (B.1)

Applying the relations via the Euler angles and eliminating time dependence [7]:

αλµ =
∑
ν

Dλ∗
νµ(Ω)aλµ, (B.2)

Yλµ(θ, φ) =
∑
ν

Dλ∗
νµ(Ω)Yλµ(θ′, φ′), (B.3)

allows to switch laboratory framework to the internal one and take only quadrupole deformations into ac-
count:

R(θ′, φ′) = R0

1 +
∑
λ,µ

(−1)µaλ−µYλµ(θ′, φ′)

 , (B.4)

and, finally, insert such new variables as β and γ deformations: a20 = β cos(γ), a2±1 = 0, and a2±2 =
√

2
2 β sin(γ). The Qλµ operator itself can be represented for the inner even-even core and particle as:

Qλµ =

A∑
i=1

ee f f rλi Yλµ ∗ (θi, φi) =

A−1∑
i=1

ee f f rλi Yλµ ∗ (θi, φi) + ee f f rλAYλµ ∗ (θA, φA), (B.5)

Q2µ ==

A−1∑
i=1

ee f f r2
i Y2µ ∗ (θi, φi) + ee f f r2

AY2µ ∗ (θA, φA), (B.6)

where ee f f is an effective charge for proton of neutron.Meanwhile the wave function can be represented by:

Ψtot =
∑

K

ψS lat.det.(~r1,~r2, ...,~rA−1)g(β, γ) |KLM〉 =

=
∑

K

|core.p〉 g(β, γ)

√
2I + 1
16π2

(
DI

MK(Ω)φi
K + (−1)I+K DI

M−K(Ω)φi
−K

)
. (B.7)

Splitting Q2µ into the core part Q1
2µ and particle dependent part Q2

2µ one may obtain for the first part:

A1 = 〈core.p|Q1
2µ|core.p〉 = ee f f

3ZR2
0

4π
α2µ∗ = ee f f

3ZR2
0

4π

∑
ν

D2
µν(Ω)(−1)µa2−µ, (B.8)

A2 = 〈g(β, γ)|A1|g(β, γ)〉 = ee f f
3ZR2

0

4π
D2
µ0(Ω) < β >, (B.9)

Taking the form of integrals including three Wigner functions in [7] one obtains:

〈I f M f K f |A2|IiMiKi〉 =
∑
K f

∑
Ki

aK f ∗ aKi ee f f
3ZR2

0

4π
(Ω) < β >

√
2I f + 1
16π2

√
2Ii + 1
16π2 ⊗
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⊗

∫ (
DI f

MK f
∗ (Ω)φK f ∗ +(−1)I f +K f DI f

M−K f
∗ (Ω)φ−K f ∗

)
D2
µ0(Ω)

(
DIi

MKi
∗ (Ω)φKi ∗ +(−1)Ii+Ki DIi

M−Ki
∗ (Ω)φ−K∗

)
dΩdq =

∑
K f

∑
Ki

aK f ∗ aKi ee f f
3ZR2

0

4π
(Ω) < β >

√
2I f + 1
16π2

√
2Ii + 1
16π2 [

∫
DI f

MK f
∗ (Ω)D2

µ0(Ω)DIi
MKi
∗ (Ω)dΩ 〈φK f |φKi〉+

+(−1)I f +K f

∫
DI f

M−K f
∗(Ω)D2

µ0(Ω)DIi
MKi
∗(Ω)dΩ 〈φ−K f |φKi〉+(−1)Ii+Ki

∫
DI f

MK f
∗(Ω)D2

µ0(Ω)DIi
M−Ki
∗(Ω)dΩ 〈φK f |φ−Ki〉+

(−1)I f +K f +Ii+Ki

∫
DI f

M−K f
∗ (Ω)D2

µ0(Ω)DIi
M−Ki

∗ (Ω)dΩ 〈φ−K f |φ−Ki〉] = (B.10)

∑
K f

∑
Ki

aK f ∗ aKi ee f f
3ZR2

0

4π
(Ω) < β >

√
2I f + 1
16π2

√
2Ii + 1
16π2

8π2

2I f + 1
[CI f M f

Ii Mi2µ
CI f K f

IiKi20 〈φK f |φKi〉+

(
+(−1)I f +K f CI f M f

Ii Mi2µ
CI f−K f

IiKi20 〈φ−K f |φKi〉 + (−1)Ii+KiCI f M f

Ii Mi2µ
CI f K f

Ii−Ki20 〈φK f |φ−Ki〉+

(−1)I f +K f +Ii+KiCI f M f

Ii Mi2µ
CI f−K f

Ii−Ki20 〈φ−K f |φ−Ki〉] =∑
K f

∑
Ki

aK f ∗ aKi ee f f
3ZR2

0

4π
(Ω) < β >

1
2

√
2Ii + 1√
2I f + 1

CI f M f

Ii Mi2µ
[CI f K f

IiKi20(〈φK f |φKi〉 + (−1)2I f−2+K f +Ki 〈φ−K f |φ−Ki〉)+

+CI f−K f

IiKi20 ((−1)I f +K f 〈φ−K f |φKi〉 + (−1)I f−2+Ki 〈φK f |φ−Ki〉)], (B.11)

For the second part for a particle one obtains:

B1 = 〈g(β, γ)core.p|Q2
2µ|g(β, γ)core.p〉 = δK f Ki , (B.12)

〈I f M f K f |B1|IiMiKi〉 =
∑
K f

∑
Ki

aK f ∗aKi ee f f

√
2I f + 1
16π2

√
2Ii + 1
16π2

∫ (
DI f

MK f
∗ (Ω)φK f ∗ +(−1)I f +K f DI f

M−K f
∗ (Ω)φ−K f ∗

)
⊗

⊗D2
µ0(Ω)r2

AY20 ∗ (θA, φA)
(
DIi

MKi
∗ (Ω)φKi ∗ +(−1)Ii+Ki DIi

M−Ki
∗ (Ω)φ−K∗

)
dΩdq =

=
∑
Ki

aK f ∗aKi ee f f
1
2

√
2Ii + 1√
2I f + 1

CI f M f

Ii Mi2µ
[CI f K f

IiKi20(〈φK f |r
2
AY20 ∗ (θA, φA)|φKi〉+(−1)2I f−2+K f +Ki 〈φ−K f |r

2
AY20 ∗ (θA, φA)|φ−Ki〉)+

+CI f−K f

IiKi20 ((−1)I f +K f 〈φ−K f |r
2
AY20 ∗ (θA, φA)|φKi〉 + (−1)I f−2+Ki 〈φK f |r

2
AY20 ∗ (θA, φA)|φ−Ki〉)], (B.13)

The combination of (B.11) and (B.13) is a full matrix element for Q2µ operator. Henceforth the reduced
transition probability can be calculated as [6]:

B(Ji → J f ) =
1

2Ji + 1

∑
Mi,M j,µ

| 〈J f M f |Q2µ|JiMi〉 |
2 =

2J f + 1
2Ji + 1

| 〈 f ||Q2µ||i〉 |2, (B.14)

and the reduced matrix element is given by the Wigner-Eckart theorem:

〈J f M f |Q2µ|JiMi〉 = CI f M f

Ii Mi2µ

〈 f ||Q2µ||i〉
2I f + 1

. (B.15)
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