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Introduction and Motivation

Usually modeling of possible hadron-quark phase transition are made with
use of the so-called Maxwell construction, where the two phases are assumed to
be separated. However due to surface tension effects in the mixed phase with
structure (pasta) could be thermodynamically preferred [1–5]. Thus a simple
model of such a mixed phase equation of state parametrized by impact of struc-
tures in mixed phase of the pressure ∆P will be very useful for investigations
of compact stars (e.g. [6]). Also, we need to have the program in order to sys-
tematically study the effect of possible mixed state of matter on the structure
of neutron stars.

The model

Let us suppose that the hadroic and quark density phases are given with
the thermodynamical potentials PH(µ) and PQ(µ) correspondingly (T = 0 case
relevant for the NS modeling). We suppose that it is possible to have a phase
transition between these two phases on the µc when one ignores any effect of
the pasta mixing (Maxwell construction). So we have

PQ(µc) = PH(µc)

Now we can modify this situation assuming that close to the phase tran-
sition point the Equation of State (EoS) of both phases are changing in due
to the effects of interaction of the phase there is an additional contribution in
the pressure at µc (∆P a constant value characterizing the transition) (see fig.1)

PM (µc) = PH(µc) + ∆P

Using this ansatz one can assume that the pressure of mixed phase PM (µ) has
the following form

PM (µ) = α(µ− µc)
p + β(µ− µc)

q + Pc + ∆P

where Pc = PHc
= PQc

, p and q for instance are non-negative integers.
In this research we focused on function model 4 degrees of the mixed phase (e.g.
p = 4 and q = 2)

The transition from H-phase to M-phase happens smoothly without a jump
in the density n(µ) = dP (µ)/dµ. Thus we have new unknowns µcH for transition
from H-phase to M-phase and correspondingly µcQ for the transition from M-
phase to Q-phase. So we have four unknown including the coffcient α and β.
The transition conditions are

PM (µcH) = PH(µcH)
PM (µcQ) = PQ(µcQ)
nM (µcH) = nH(µcH)
nM (µcQ) = nQ(µcQ)
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Solving the equation for densities, one can find the values for critical chemical
potentials.

Figure 1: The model of the equation of state with mixed phase based on Maxwell
construction.
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Formulation of the problem

The purpose of my work is to develop an algorithm and a C ++ program
for finding the coefficients of the equation

P (x) = α(x− xc)4 + β(x− xc)2 + γ

describing the phenomenological models of a mixed phase of cold dense nu-
clear matter

There are initially 2 increasing functions R(x) and Q(x) and Q(x) increases
faster than R(x). It is also known that these two functions intersect at some
point xc.

R(xc) = Q(xc)

The value of the function P (x) at the point xc

P (xc) = Q(xc) + ∆P

where ∆P is the initial value.
To find the coefficients, it is necessary to solve a system of nonlinear equa-

tions: 
α(xl − xc)4 + β(xl − xc)2 + γ = f1(xl)
α(xr − xc)4 + β(xr − xc)2 + γ = f1(xr)

4α(xr − xc)3 + 2β(xr − xc) = f ′2(xr)
4α(xl − xc)3 + 2β(xl − xc) = f ′1(xl)
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Algorithm for solving

It is required to develop an algorithm and implement it in C / C ++ for inclu-
sion in the baYes software package (https://gitlab-hybrilit.jinr.ru/nmeos/cseos)

To find the solution of this system, the Newton method is used. The use of
the Newton method implies the differentiability of functions F1(x), F2(x), . . . , Fn(x)

F1 = α(xl − xc)4 + β(xl − xc)2 + γ − f1(xl)
F2 = α(xr − xc)4 + β(xr − xc)2 + γ − f1(xr)
F3 = 4α(xr − xc)3 + 2β(xr − xc)− f ′2(xr)
F4 = 4α(xl − xc)3 + 2β(xl − xc)− f ′1(xl)

and the nonsingularity of the Jacobi matrix (detJ(xk) 6= 0)

J(x) =



∂F1(x)

∂x1

∂F1(x)

∂x2
. . .

∂F1(x)

∂xn
∂F2(x)

∂x1

∂F2(x)

∂x2
. . .

∂F2(x)

∂xn
. . .

∂Fn(x)

∂x1

∂Fn(x)

∂x2
. . .

∂Fn(x)

∂xn


It is also necessary to know the initial approximation for the variables. For

points xl and xr , the initial approximation ca be taken to be the point of
intersection of xc , but we do not know anything about α and β, therefore we
know nothing about their initial approximation. As a result, we can apply the
Newton method only for a system of two equations depending on xl and xr
In order to bring the original system to a system of two equations, we express
the α and β of their two equations and substitute their values in the remaining
equations.

α = − (xc − xr)f ′1(xl) + (xl − xc)f ′2(xr)

4(xc − xl)(xc − xr)(xl − xr)(xl + xr − 2xc)

β =
f ′2(xr)(xl − xc)3 − f ′1(xl)(xr − xc)3

2(xr − xc)(xl − xc)((xl − xc)2 − (xr − xc)2)

When substituting, we obtain a system of two equations{
F1(xl, xr) = 0
F2(xl, xr) = 0

when

F1(xl, xr) = γ − f1(xl)−
(xl − xc)4((xc − xr)f ′1(xl) + (xl − xc)f ′2(xr))

4(xc − xl)(xc − xr)(xl − xr)(xl + xr − 2xc)
+

(xl − xc)(−(xr − xc)3f ′1(xl) + (xl − xc)3f ′2(xr))

2(xr − xc)((xl − xc)2 − (xr − xc)2)

6



F2(xl, xr) = γ − f2(xr)− (xr − xc)4((xc − xr)f ′1(xl) + (xl − xc)f ′2(xr))

4(xc − xl)(xc − xr)(xl − xr)(xl + xr − 2xc)
+

(xr − xc)(−(xr − xc)3f ′1(xl) + (xl − xc)3f ′2(xr))

2(xl − xc)((xl − xc)2 − (xr − xc)2)

The Jacobi matrix of this system of equations is as follows

J(x) =

 ∂F1(x)

∂xl

∂F1(x)

∂xr
∂F2(x)

∂xl

∂F2(x)

∂xr


when

F1
′
xl

= ((x2c − x2l + 2xc(xl − 2xr) + 2x2r)((xc − xr)(2x2c + 3x2l − x2r + 2xc(−3xl + xr))f ′1(xl)−
2(xc − xl)3f ′2(xr)− (xc − xl)(xc − xr)(2xc − xl − xr)(xl − xr)f1

′′(xl)))/

(4(xc − xr)(xl − xr)2(xl + xr − 2xc)
2)

F1
′
xr

= ((xc − xl)3(−2(xc − xr)3f ′1(xl) + (xc − xl)((2x2c + 2xcxl − x2l − 6xcxr + 3x2r)f ′2(xr) +

(xc − xr)(2xc − xl − xr)(xl − xr)f2
′′(xr))))/(4(xc − xr)2(xl − xr)2(−2xc + xl + xr)2)

F2
′
xl

= ((xc − xr)3((xc − xr)(2x2c + 3x2l − x2r + 2xc(xr − 3xl))f
′
1(xl)− 2(xc − xl)3f ′2(xr)−

(xc − xl)(xc − xr)(2xc − xl − xr)(xl − xr)f1
′′(xl)))/(4(xc − xl)2(xl − xr)2(xl + xr − 2xc)

2)

F2
′
xr

= ((x2c + 2x2l − x2r + 2xc(xr − 2xl))(−2(xc − xr)3f ′1(xl) + (xc − xl)((2x2c + 2xcxl −
x2l − 6xcxr + 3x2r)f ′2(xr) + (xc − xr)(2xC − xl − xr)(xl − xr)f2

′′(xr))))

/(4(xc − xl)()xl − xr)2(xl + xr − 2xc)
2

The initial approximation for xl and xr can take points around the point of
intersection of lines

If it is determined the initial value ,the iterative process of finding the solu-
tion of a system Newton’s method can be represented in the form

x
(k+1)
1 = x

(k)
1 + ∆x

(k)
1

x
(k+1)
2 = x

(k)
2 + ∆x

(k)
2

. . .

x
(k+1)
n = x

(k)
n + ∆x

(k)
n
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where the increments are determined from the solution of a system of linear
algebraic equations, all the coefficients of which are expressed in terms of known
previous approximation



f1(x(k)) +
∂f1(x(k))

∂x1
∆x

(k)
1 +

∂f1(x(k))

∂x2
∆x

(k)
2 + · · ·+ ∂f1(x(k))

∂xn
∆x

(k)
n = 0

f2(x(k)) +
∂f2(x(k))

∂x1
∆x

(k)
1 +

∂f2(x(k))

∂x2
∆x

(k)
2 + · · ·+ ∂f2(x(k))

∂xn
∆x

(k)
n = 0

. . .

fn(x(k)) +
∂fn(x(k))

∂x1
∆x

(k)
1 +

∂fn(x(k))

∂x2
∆x

(k)
2 + · · ·+ ∂fn(x(k))

∂xn
∆x

(k)
n = 0

Finding solutions of system of linear equations is performed by Kramer
General view of the solution

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .
an1x1 + an2x2 + · · ·+ annxn = bn

∆xk1 =
−f1(xk)f2

′xr(xk) + f2(xk)f1
′xr(xk)

f1′xl
(xk)f2′xr

(xk)− f2′xl(xk)f1′xr(xk)

∆xk2 =
f1

′
xl

(xk)(−f2(xk)) + f1(xk)f2
′xl

f1′xl
(xk)f2′xr

(xk)− f2′xl(xk)f1′xr(xk){
x
(k+1)
1 = x

(k)
1 + ∆x

(k)
1

x
(k+1)
2 = x

(k)
2 + ∆x

(k)
2

As a condition of graduation from iterations commonly used criterion

|x(k+1) − x(k)| ≤ ε
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Conclusion

In the end, a program was written to find the coefficients of the given func-
tion. The program is written in both C++ and Wolfram mathematica. C++
program is planned to be integrated to the baYes software (https://gitlab-
hlit.jinr.ru/nmeos/cseos) for statistical investigation of modern nuclear EoS us-
ing observational constants.

The solutions obtained by the program depend on the accuracy of what
snicket error. The algorithm solving this problem does not depend on the ini-
tial given functions f1 and f2. Importantly, the program was able to get the
value of these functions at a certain point, and the value of the derivative func-
tions at this point.

Acknowledgments

I would like to express my gratitude to my scientific adviser, the scientific
collaborator of the JINR, Alexander Ayriyan, who not only gave me an excel-
lent opportunity to undergo an internship at JINR, but also provided support
throughout the project.
I also would like to thank Hovik Grigoryan for fruitful discussions. Let me note
that the considered phase transition construction mimicking mixed phase EoS
is named Grigorian construction.

9



References
[1] D. N. Voskresensky et al., Nuclear Physics A 723, pp. 291–339 (2003), pp.
291–339
[2] T. Tatsumi et al., Nucl. Phys. A 718, pp. 359–362 (2003)
[3] T. Endo et al., Nucl. Phys. A 749, pp. 333–336 (2005)
[4] T. Endo et al., Prog. of Theor. Phys. 115(2), pp. 337–353 (2006)
[5] T. Tatsumi et al., arXiv:1107.0804 [nucl-th] (2011)
[6] T. Noda et al., Astrophys. J. 765:1 (2013)

10


