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ABSTRACT

The distribution in the overlap region of the colliding nuclei is affected by the pressure gradients
created in the initial moment of collision, which can be characterized by the coefficients of Fourier
expansion of azimuth distribution in momentum coordinates. The event plane angle can be estimated
via the azimuthal distributions of particles produced in the collision. We report the event-plane
angle determined by the standard method, resolution of BMD detector, the directed and elliptic flow
for 5000 events of Au+Au min-bias at energies of 4, 9 and 11GeV in c.m using URQMD as event
generator. .

Introduction

One of the main goals in studying collision of relativistic heavy ion is to reconstruct and relate the initial geometry of
collision with the observable measured by detectors. The initial geometry of a heavy-ion collision can be described in
terms of the impact parameter vector connecting the centers of the colliding nuclei. The impact parameter magnitude is
correlated with the size of the overlap region which is called centrality. In URQMD the impact parameter is added on x
direction, thus we can define a plane with the impact parameter vector and the beam direction z, this plane is usually
called reaction plane.

Section 1 shows the analysis of the azimuthal anisotropy resulting from non-central nuclear collisions using the Fourier
expansion of azimuthal distributions. Section 2 discusses the results of the event plane angle obtained by using the event
plane angle standard method. Section 3 show the results of the coefficients of the Fourier expansion, specifically the
first two, usually called directed and elliptic flow respectively. Finally in section 4, the resolution of the BMD detector
is discussed.

1 Azimuth distribution of particles

The Physics produced in Relativistic Heavy Ion Collisions(RHIC) can be described in terms of initial collision’s
geometry, which can be described in terms of the impact parameter vector connecting the centers of the colliding nuclei.
The impact parameter magnitude can not be measured directly, one has to estimate it from the number of produced
particles or the energy of spectators using experimental data, however in simulation analysis is commonly used the
impact parameter(b) vector to describe it since we know it by the Monte Carlo. The impact parameter magnitude is
correlated with the size of the overlap region which is called centrality. In URQMD the impact parameter is added on x
direction, thus we can define a plane with the impact parameter vector and the beam direction z, this plane is usually
called reaction plane.
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Figure 1: Illustration of a non-central heavy ion collision with an elliptical reaction volume which is symmetric with
respect to the reaction plane.

In non-central collisions the shape of the interaction region depends on the impact parameter of the collision. If the
impact parameter is zero, the shape of the interaction region is a sphere centered at the origin. But, if the impact
parameter is not null, the interaction shape could be an ellipse creating an azimuthal transverse momentum distribution
due the anisotropy of the reaction volume. To characterize this phenomenon, it is used a Fourier expansion of the
moment distribution with respect to the reaction plane. For example defining a quantity r(φ) which can be dPT /dφ
where dPT is the total transverse momentum of particles emitted at azimuthal angle φ. Experimentally this function
can be constructed by data, regarding to periodicity of the function r(φ) is possible to write it in the form of Fourier
expansion.

r(φ) =
x0
2π

+
1

π

∞∑
n=1

[xncos(nφ) + ynsin(nφ)] (1)

As we know for Fourier analysis the coefficients in the Fourier expansion are integrals with weight proportional to
cosines and sines. How ever, in this case we are treating with a finite number of particles, so the integral becomes a
simple sum over all particles.

xn =
∑
ν

rνcos(nφν)

yn =
∑
ν

rνsin(nφν) (2)

Here the sum runs in all particles and φν is the azimuths angle of the ν particle. With these Fourier analysis it is possible
to find important signatures of flows distribution.

With the previous analysis we can find a more general equation to describe the azimuths distribution for particles in
energy, transverse momentum and rapidity region. Defining a function r(φ) as E d3N

d3p . Here, we consider the E as the
energy, N a measurable quantity, p as the three momentum of each particle and the angle now is measured at other
plane with angle φ−ΨRP . This change of plane is very important since we are taking into account the reaction plane
of the event(ΨRP ) and the angle(φ) of each particle which lies in xy plane.
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Figure 2: Azimuth angle of particles in momentum coordinates φ, the reaction plane angle ΦRP and φ′ is the rest of the
azimuth angle of particles and the reaction plane angle and ||Q|| is the vector used in the standard event plane angle
method discussed in section 2.

To make the calculus easier is common to reformulate the integral over a particle’s momentum in terms of rapidities and
transverse momenta. So we need to calculate the Jacobian determinant, but first the transformation equations are:

px = pT cos(θ)

py = pT cos(θ)

pz =
√
p2T +m2sinh(y) (3)

For simplicity we used the angle θ instead of φ−ΨRP . The Jacobian is:

J(px, py, pz)pT ,θ,y =
∣∣∣∂[px,py,pz ]∂[pT ,θ,y]

∣∣∣
= pT cosh(y)

√
p2T +m2 (4)

Since we are considering the particles as free particles without any specific potential acting on them, the 4-momentum
vector loss one degree of freedom, we can rewrite it as p3 = p(px, py, pz) = p(pT , y) [7]. So the transverse mass and
the energy are defined as:

mT =
√
p2T +m2

E = cosh(y)mT (5)

And the Jacobian of equation (4) reduce to:

J(px, py, pz)pT ,θ,y = pTE (6)

Now we are able to calculate the coefficients of the Fourier expansion of the azimuth distribution (??)

x0 =

∫
D

E
d3N

d3p
dθ

=

∫
D

E
d3N

pTEdpT dθdy
dθ

=
d2N

pT dpT dy

∣∣∣
D

(7)

The coefficient x0 is determined by the equation (7) which is valuated in the domain D = D(pT , y) but for the next
equations we expressed without the evaluation. Now for the xn and yn coefficients.
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xn =

∫
D

E
d3N

d3p
cos(nθ)dθ

=
d2N

pT dpT dy

[∫
D
E d3N

d3p cos(nθ)dθ∫
D
E d3N
pTEdpT dθdy

dθ

]

=
d2N

pT dpT dy
〈cos(nθ)〉

yn =
d2N

pT dpT dθdy
〈sin(nθ)〉 (8)

Recalling that the particle source is symmetric with respect to the reaction plane the yn coefficients are zero and the
average is over all the particles in the range of rapidity and transverse momentum wanted. Plugging the equations (7)
and (8) in equation (1) and remembering that the angle θ = φ−ΨRP . The azimuth angle distribution is:

E
d3N

d3p
=

1

2π

d2N

pT dpT dy

[
1 + 2

∞∑
n=1

〈cos[n(φ−ΨRP )]〉cos[n(φ−ΨRP )]

]

=
1

2π

d2N

pT dpT dy

[
1 + 2

∞∑
n=1

vn(pT , y)cos[n(φ−ΨRP )]

]
(9)

Where E, N ,p3 , pT , φ and η are the particle’s energy, yield, total 3-momentum, transverse momentum, azimuthal
angle and rapidity, respectively. This results is very important because of the simplicity of the term vn can be compared
to theoretical predictions or to simulations for detector acceptance. In addition we can simulate till the n order of vn
coefficient, each one is related to initial conditions of collision. It is important to mention that he coefficients are usually
called harmonic coefficients. We are going to study in more detail only the first two coefficients.

2 Collective flow at RHIC

The collective flows are defined as the vn coefficients in equation (9)

vn = 〈cos[n(φ−ΨRP )]〉 (10)

Depending of the number n it change its name according to the type of flow which are related. Using the next image to
express better the idea:

Figure 3: Geometric illustration of the first 4 vn coefficients. This image was taken from [5].

If the reaction plane angle is null is possible to the first three coefficients vn in terms of pT , px, py, the first three
coefficients are:
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v1 =
〈 px
pT

〉
v2 =

〈p2x − p2y
p2T

〉
v3 =

〈p3x − pxp2y − px
p3T

〉
(11)

The first two coefficients are specially important in the analysis of flows in non-central heavy ion collisions. The v1 is
usually called "directed flow" and represent an overall shift of the distribution in the transverse plane. On the other hand
the second harmonic coefficient represent an ellipse in the transverse distribution of momentum. Following the same
reasoning the third harmonic coefficient is called triangular flow and so on.

3 Event plane angle

Since in experiments it is not possible to know the initial conditions of nuclei collisions we relate the physics produced
with observable such as multiplicity, transverse momentum, event angle plane, etc. Knowing the event angle plane
permit us to study the collective flows mentioned above, study the resolution of a detector, among other things. The
estimation of the reaction plane angle is called event plane angle, it is possible to calculate the event plane angle
with experimental data or simulations. In this case since we do not have experimental data yet, we focus only at the
simulation method. This method is called the standard event plane method,so it is possible to estimate ΨRP . Practically
in this method we measure how the particles are distributed and its weights in the transverse plane. So, we define a two
dimensional vector in transverse plane Q

Qn,x =

N∑
i

wicos(nφi) = Qncos(nΨn)

Qn,y =

N∑
i

wisin(nφi) = Qnsin(nΨn) (12)

where the sum goes over all particles i used in the event plane calculation. Where φ, φ′, ΨRP and wi are the lab
azimuths angle, different from azimuths angle and reaction plane and weight for particle i. Transverse momentum is a
common choice as weight, since it increase linearly as the coefficients of the Fourier expansion vn(pT , η), so w = pT .
Analyzing the Figure 1 we can find the values of the angle φ in terms of px and py .

cos(φ) =
px
pT

sin(φ) =
py
pT

(13)

Since the vector Qn in equation (12) is the same we can calculate the magnitude and divide the y component by the x
component.

Qn,y
Qn,x

=
sin(nΨn)

cos(nΨn)

(14)

Solving for Ψn we obtain.

Ψn =
1

n
Tan−1

[
Qn,y
Qn,x

]
=

1

n
Tan−1

[∑N
i w

icos(nφi)∑N
i w

isin(nφi)

]
(15)
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With equation (15) we can calculate the event plane for a detector if know the orientation in the transverse plane and the
weight. If we use transverse momentum as weight and with the equations (13), the event plane angle is reduced to:

Ψn =
1

n
Tan−1

[∑N
i p

i
T cos(nφi)∑N

i p
i
T sin(nφi)

]

=
1

n

[∑N
i py

i∑N
i px

i

]
(16)

Equation (16) is easy to evaluate since we know the momentum coordinates for each particle in all the events. This
method is made event by event, so each event has its own event plane angle determined by this method. However we
calculate this angle using the particles which reach the detector, since we know that the multiplicity is related with the
impact parameter is common to adjust the coefficients with a parameter defined by each detector called resolution.

For detectors with high granularity as BMD detector we can use the energy deposited by particle or multiplicity per
cell as weight and the angle φ is the ith-cell’s azimuthal angle measured from the center of the hodoscope to the cell
centroid.

Ψn =
1

n

[∑N
i Eiyi∑N
i Eixi

]
(17)

The event angle plane was calculated for BMD detector was calculated using equations (16) and (17).

4 Event plane angle resolution

In practice the reaction plane is not possible to measure it, instead is common used the event plane which can be
obtained by different experimental methods such as "correlation between flow angles of independent sets of particles"
[1], but in simulation we are able to use the reaction plane and event plane angle. To find the event plane resolution we
need to compare the event plane angle (15) with the true reaction plane angle given by Monte Carlo simulation for the
n harmonic in a narrow centrality bin. The event plane resolution is:

Rn = 〈cos[n(Ψn −ΨRP )]〉 (18)
Where the reaction plane is given by Monte Carlo and the event plane angle using equation (15). This correction apply
for the collective flow averaged in wide centrality bins. Thus, the collective flow increase since the resolution is always
less than 1, unless we are using a perfect detector which is actually not yet created. The coefficients with the correction
are:

vn =
vobs
R

(19)

Where vn are the corrected collective flows coefficients in a narrow centrality bin. Here, some authors have discussion
about how to implement this correction [6], nevertheless since we could not find the resolution of the detector well, we
could not implement this correction in the code, for that reason all the flows presented are the observables flows.

5 Simulation and results

5.1 Collective flow at RHIC

For studying collective flow we can start by analyzing the coefficients vn directly from simulation using the MCTRACKS
branch in the tree created after detector’s simulation using MpdROOT framework. For the calculus we used the standard
event plane angle method with transverse momentum as weight to calculate the reaction plane using equation (16)
selecting only the primary tracks and compared with the collective flow calculated by using the particles which reach
the detector to calculate the event plane angle obtained by the standard method using weight as transverse momentum.
Finally, we compared the directed and elliptic flow for pions and protons calculated by using the Monte Carlo reaction
plane, for URQMD is 0 by default. We present the results according of its collision c.m energy.
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Figure 4: Directed and elliptic flow as a function of pseudorapidity and transverse momentum from minimum bias 4
GeV Au+Au using URQMD as event generator at time t=100fm. The left figure is for BMD detector points and the
right figure for primary tracks.
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Figure 5: Directed and elliptic flow as a function of pseudorapidity and transverse momentum from minimum bias 4
GeV Au+Au using URQMD as event generator at time t=100fm calculated with primary tracks and true reaction plane
angle for pions and protons.
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Figure 6: Directed and elliptic flow as a function of pseudorapidity and transverse momentum from minimum bias 9
GeV Au+Au using URQMD as event generator at time t=100fm. The left figure is for BMD detector points and the
right figure for primary tracks.
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Figure 7: Directed and elliptic flow as a function of pseudorapidity and transverse momentum from minimum bias 9
GeV Au+Au using URQMD as event generator at time t=100fm calculated with primary tracks and true reaction plane
angle for pions and protons.
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Figure 8: Directed and elliptic flow as a function of pseudorapidity and transverse momentum from minimum bias 11
GeV Au+Au using URQMD as event generator at time t=100fm. The left figure is for BMD detector points and the
right figure for primary tracks.
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Figure 9: Directed and elliptic flow as a function of pseudorapidity and transverse momentum from minimum bias 4
GeV Au+Au using URQMD as event generator at time t=100fm calculated with primary tracks and true reaction plane
angle for pions and protons.

9



JOINT INSTITUTE OF NUCLEAR RESEARCH

5.2 Event plane angle

The event plane angle is calculated using the standard method which is described in section 3, at the final of this report
is the code which was implemented for this method using transverse momentum for all particles in an specific range of
momentum and pseudorapidity. In this analysis the range are for pt < 2GeV and 1.9 < |η| < 3.9. Then, the event
plane angle method is calculated measuring the energy loss and multiplicity per cell using equation (17).
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Figure 10: Difference from true event plane angle and event plane angle for the first harmonic calculated using the
standard method for different weights, the simulation minimum bias 4 GeV Au+Au using URQMD as event generator
at time t=100fm.
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Figure 11: Difference from true event plane angle and event plane angle for the first harmonic calculated using the
standard method for different weights, the simulation minimum bias 9 GeV Au+Au using URQMD as event generator
at time t=100fm.
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Figure 12: Difference from true event plane angle and event plane angle for the first harmonic calculated using the
standard method for different weights, the simulation minimum bias 11 GeV Au+Au using URQMD as event generator
at time t=100fm.
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5.3 Event plane angle resolution

As we can see in the figures 10-12 the difference from the true reaction plane angle is between 1 and 2 rad which clearly
does not match. So if we calculate the resolution with equation (18), remembering that for URQMD the reaction plane
angle is 0, so ΨRP = 0, letting the resolution of BMD detector for the first harmonic:

R1 = 〈cos[Ψ1]〉 (20)

Here the average is over events in a centrality bin, some comments about centrality can be found in the first appendix.
We calculated the resolution for the BMD detector using as weight the transverse momentum, multiplicity and energy
loss per cell.
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Figure 13: Resolution for BMD detector, the event plane angles were calculated by using the standard method with
different weights at function of centrality. The simulation minimum bias 11 GeV Au+Au using URQMD as event
generator at time t=100fm.

The resolution is not well described because the determination of event plane angle is wrong, we can compare the
results with similar detectors [4], [6] and [10].

Summary

A macro for calculate the flows, event plane angle with different weights and resolution were made. The method can be
found in v2std.C macro in mpdroot directory. The reasons why the results does not match with other results specially
for resolution are discussed however till today these are the latest results. Of course there is a lot of work to finish. This
summer were very useful for me to develop my knowledge in mpdroot simulations, macros for physical analysis and
how to work with root.
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Apendix

Brief comments about centrality

If you want a more detailed explanation of centrality determination in relativistic heavy ion collisions you can read "
Geometric relation between centrality and the impact parameter in relativistic heavy-ion collisions" [8] Is very useful
to find a relation between centrality and impact parameter for simulations because we are able to control it and analyze
the results in term of other parameters such as multiplicity of produced particles, number of participants, etc. To all this
parameters we will call them n to avoid being repetitive. The centrality C is usually defined as:

C(N) =

∞∑
n=N

P (n) (21)

Where P (n) is the probability to find the value n and C(N) is the probability of obtain an event n with n larger or
equal to N(n ≥ N ). Now we need to identify how to calculate the P (n). This probability needs to be related with the
n, but if we want to relate the variable n with the impact parameter we need to calculate the probability of obtain a n
value with an impact parameter given. So the probability is:

P (n) =

∫ ∞
0

2πbdbP (b)P (n|b)
σinel

(22)

The diferential area of collision is of course related with b and it is dA = 2πbdb, P (b) is the probability of an inelastic
collision event at impact parameter b and P (n|b) is the probability of getting a n value given an impact parameter b.
Then, the centrality es:

C(N) =

∞∑
n=N

∫
2πbdbP (b)P (n|b)

σinel
(23)

The equation (23) is properly normalized just recalling the definition of inelastic cross section and that the sum over all
probabilities must be one. Here we are going to make 3 assumptions to continue in an easy but useful way.
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• For heavy ion nuclei we can consider the continuous limit of n.
∞∑
n=N

≈
∫ ∞
N

dn

=

∫ ∞
0

dnθ(n−N) (24)

The θ(n−N) function in the last equation is just a step function which returns value 1 if n≥N and 0 otherwise.
• Considering a large set of values of n, we can estimate the behavior of n around the mean value of the set

(n̄(b)). So in a very rough approximation:

P (n|b) = δ(n− n̄(b)) (25)

• While the impact parameter increases the n value decreases till two nuclei do not collide. This means that n̄(b)
is a monotonically decreasing function of b. Substituting n̄(b) with b(N) since we can expect that b(N) is a
monotonically decreasing function as well.

Using the 3 assumptions commented before we get:

C(N) =

∫ ∞
0

2πbdbP (b)

σinel
θ(b(N)− b) (26)

To integrate the equation (26) we just need to use the step function to change the limits of integration. So if b≤ b(N)
the step function is 1 otherwise is 0. So the upper limit of integration is chaged to b(N), getting finally

C(N) =
1

σinel

∫ b(N)

0

2πbdbP (b)

=
σinel(b(N))

σinel

≈ πb(N)2

σinel
(27)

The last approximation is very useful at centrality determination since it is easier to know the value of impact parameter
for a given N value than obtain the inelastic cross section obtained by a given parameter b. With equation (27) we
can compute the value of centrality in terms of impact parameter, the value of inelastic cross section is taken from [9]
getting σinel = 7.05b where b = 10−28m2. So for our purpose we need centrality values of 5%, 20%, 30%, 40%, 50%,
60%, 70%, 80% and 90%. Solving for impact parameter we have:

b =

√
Cσinel
π

(28)

Computing for impact parameters for each centrality value:

C(b) 5% 20% 30% 40% 50% 60% 70% 80% 90%
b 3.349 6.699 8.205 9.474 10.592 11.603 12.533 13.398 14.211

Table 1: Computed values of impact parameter using the equation (27) as a function of centrality.

Standard Method Event Plane Angle Code

/ / Open t h e t r e e
/ / De f in e P o i n t e r s t o Data
/ / I t e r a t e ove r e v e n t s

//−−−−−−−−−−−−−−−−−−−−−−STANDARD ANGLE METHOD−−−−−−−−−−−−−−−−−−−−−−−−−
Double_ t Qcos = 0 . , Qsin = 0 . ;
Doub le_ t AELoss [ 1 6 2 ] = { 0 } ;
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Double_ t QcosELOSS = 0 . , QsinELOSS = 0 . ;
Doub le_ t AEMulti [ 1 6 2 ] = { 0 } ;
Doub le_ t QcosMULTI = 0 . , QsinMULTI = 0 . ;

f o r ( I n t _ t i P o i n t = 0 ; i P o i n t < bmdPoints−> G e t E n t r i e s F a s t ( ) ; i P o i n t ++)
{

BmdPoint∗ bmdPoint = ( BmdPoint ∗ ) bmdPoints−>UncheckedAt ( i P o i n t ) ;
Doub le_ t z = bmdPoint−>GetZ ( ) ;
Doub le_ t px = bmdPoint−>GetPx ( ) ;
Doub le_ t py = bmdPoint−>GetPy ( ) ;
Doub le_ t pz = bmdPoint−>GetPz ( ) ;
Doub le_ t p t = TMath : : S q r t ( px∗px + py∗py ) ;
Doub le_ t p h i = TMath : : ATan2 ( py , px ) ;
I n t _ t NumberRing = bmdPoint −> G e t D e t e c t o r I D ( ) ;

I n t _ t NumberCell = bmdPoint−>Ge tCe l l ID ( ) ;
Doub le_ t E l o s s = bmdPoint −> GeteLoss ( ) ;
Doub le_ t e t a = 0 ;
Doub le_ t P = TMath : : S q r t ( px∗px + py∗py + pz∗pz ) ;
i f ( TMath : : Abs ( P− pz ) >0 .0000000001)

{
e t a = 0 . 5∗TMath : : Log ( ( P+pz ) / ( P−pz ) ) ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−Event P l a n e Angle Method−−−−−−−−−−

//−−−−−−−−−−−−−−−−−−−−−−pT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( 1.9 <= TMath : : Abs ( e t a ) && TMath : : Abs ( e t a ) <3.9 ) {

Qcos += p t ∗TMath : : Cos ( p h i ) ;
Qsin += p t ∗TMath : : S in ( p h i ) ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//−−−−−−−−−−−−−−−Energy Loss & M u l t i p l i c i t y p e r c e l l−−−−−−−−−−−
i f ( NumberRing ==1 ) {

f o r ( i n t i = 0 ; i <12; i ++ ) {
i f ( NumberCell == i ) {

AELoss [ i ] += E l o s s ;
AEMulti [ i ] ++;

}
}

}
i f ( NumberRing ==2 ) {

f o r ( i n t i = 0 ; i <18; i ++ ) {
i f ( NumberCell == i ) {

AELoss [ i +12] += E l o s s ;
AEMulti [ i +12] ++;

}
}

}
i f ( NumberRing ==3 ) {

f o r ( i n t i = 0 ; i <24; i ++ ) {
i f ( NumberCell == i ) {

AELoss [ i +30] += E l o s s ;
AEMulti [ i +30] ++;

}
}

}
i f ( NumberRing ==4 ) {

f o r ( i n t i = 0 ; i <30; i ++ ) {
i f ( NumberCell == i ) {

AELoss [ i +54] += E l o s s ;
AEMulti [ i +54] ++;
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}
}

}
i f ( NumberRing ==5 ) {

f o r ( i n t i = 0 ; i <36; i ++ ) {
i f ( NumberCell == i ) {

AELoss [ i +84] += E l o s s ;
AEMulti [ i +84] ++;

}
}

}
i f ( NumberRing ==6 ) {

f o r ( i n t i = 0 ; i <42; i ++ ) {
i f ( NumberCell == i ) {

AELoss [ i +120] += E l o s s ;
AEMulti [ i +120] ++;

}
}

} / / End BMD loop
//−−−−−−−−−−−−−−−−Event P l a n e Angles−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Double_ t PhiEP_PT = ( 1 / Num_Harm)∗TMath : : ATan2 ( Qsin , Qcos ) ;
Doub le_ t PhiEP_ELOSS = ( 1 / Num_Harm)∗TMath : : ATan2 ( QsinELOSS , QcosELOSS ) ;
Doub le_ t PhiEP_MULTI = ( 1 / Num_Harm)∗TMath : : ATan2 ( QsinMULTI , QcosMULTI ) ;
} / / End e v e n t l oop
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