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1 Introduction

For the last few decades physicists have been trying to solve the mysteries of neutrino. The

first neutrinos were detected in the middle of XX century and there are still a lot of questions

that are not answered yet. Scientists suggest that understanding of neutrinos nature will help to

explore the Universe secrets.

Neutrino is an elementary particle that interacts with other particles only through weak

interactions, which makes it hard to be detected. It is the only truly neutral particle in the

Standard Model of elementary particles. The fact that neutrino is a neutral particle opens a

door for the intriguing question whether neutrinos and antineutrinos are the same particles or

different — Majorana or Dirac particles?

According to the Standard Model of elementary particles there are three types of neutrino:

electron, muon and tau neutrino. Those types are usually referred as flavors. Flavor neutrinos

have no definite mass.

The phenomenon that neutrino being produced as a neutrino with definite flavor and after

propagation may be detected as a neutrino with a different flavor is known as neutrino oscil-

lations. For example, electron neutrino oscillations into muon and tau neutrino posed a long

standing riddle why flux of neutrino from Sun was two times less then expected. Such a process

may occur only if flavor neutrinos are composed out of neutrinos with definite mass. It is called

neutrino mixing. The flavor and massive neutrinos are related to each other through a rotation

in 3-dimensional space:

|να〉 =
3∑
i=1

Vαi|νi〉, (1)

where |να〉 is a flavor neutrino state, |νi〉 is a massive neutrino state and Vαi is a complex unitary

matrix known as a Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The PMNS matrix is

usually parameterized by three angles — θ12, θ13, θ23 and one phase — δCP [1].

The frequency of oscillations are defined by the mass splittings ∆m2
ij = m2

i−m2
j of massive

neutrinos. The general formula for oscillation probability reads:

P (να → νβ) = δαβ − 4
∑
i>j

Re(V ∗
αiVβiVαjV

∗
βj) sin2

∆m2
ijL

4E

+2
∑
i>j

Im(V ∗
αiVβiVαjV

∗
βj) sin2

∆m2
ijL

2E
. (2)
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The existence of neutrino oscillations is the first indication that Standard Model is not com-

plete and should be extended to explain the nature of neutrino masses and why they are so tiny

in comparison with other particles.

Some of the open questions in the neutrino physics that physicists are striving to find an

answer to:

• Neutrino mass hierarchy problem or which neutrino is heavier: ν1 (inverted hierarchy) or

ν3 (normal hierarchy)?

• The absolute scale of neutrino masses is still unknown.

• Neutrino nature — Dirac or Majorana?

• What is the value of the phase δCP ?

To answer these questions huge and complicated detectors are required. And the amount of

data to be analyzed is also enormous.

In this work we consider two cutting-edge reactor antineutrino experiments — JUNO and

Daya Bay.

1.1 JUNO

JUNO, Jiangmen Underground Neutrino Observatory, is an upcoming neutrino experiment

located in the Southern China in Jiangmen province. It will observe the flux of reactor electron

antineutrinos. The 20-kilotons liquid scintillator detector will be instrumented with 17000 of

20” PMTs and 25000 3” PMTs that would provide an unprecedented 3% energy resolution. The

detector will be located underground on the depth of 700 meters. This is crucial for reducing the

backgrounds related to cosmic muons passing through a detector [2]. Two nuclear power plants,

Taishan and Yangjiang, located at average distance of 52.5 kilometers from JUNO location

would serve as a powerful source of antineutrino producing ≈ 6× 1021 ν̄e per second.

Such a setup would allow JUNO to cover a wide range of physical topics and searches [3]:

• Determination of the neutrino mass hierarchy at the confidence level of 3 − 4σ. It is the

main goal of the experiment;
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• Precise measurement of the neutrino mixing parameters and mass splitting with a sub-

percent accuracy;

• Measurement of neutrino flux from radioactive decays inside Earth (geoneutrinos) with a

record statistics;

• Measurements of solar neutrino flux from 8B and other isotopes;

• Measurements of atmospheric neutrinos;

• Potential measurement of neutrinos from supernova with high statistics;

• Exotic searches such as:

– Sterile neutrinos;

– Proton decay;

– Non-standard interactions of neutrinos;

– Neutrinos from dark matter annihilation.

The detector construction is underway and JUNO is expected to start data taking in 2020.

1.2 Daya Bay

The Daya Bay Reactor Antineutrino Experiment is the reactor experiment located near the

Daya Bay Nuclear Power Plant in Dapeng City in China. The experimental setup consists of 8

identically designed detectors distributed over 3 sites and 6 reactor cores, 2.9 GW of thermal

power each as shown at Figure 1.

Each detector contains 20 tons of gadolinium doped liquid scintillator in inner vessel of the

detector and 20 tons of non-doped scintillator. Having both near and far detectors in terms of

distance to the reactors allows to significantly decrease the correlated uncertainties of antineu-

trino flux from reactors and of the detection efficiency. High statistics and small backgrounds

contamination lead to the currently most precise measurement of mixing angle θ13 and mass

splitting ∆m2
32, Figure 2.

In addition to the oscillation parameters measurements Daya Bay also presents a number of

important results:
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Figure 1: The scheme of Daya Bay detectors and reactors location.

Experiment Value

Daya Bay nGd

0 0.05 0.1 0.15 0.2 0.25

sin2 2θ13

0.0841±0.0033

RENO nGd 0.082±0.010

Daya Bay nH 0.071±0.011

D-CHOOZ nGd 0.119±0.016

RENO nH 0.086±0.019

D-CHOOZ nH 0.095+0.038
−0.039

T2K 0.100+0.041
−0.017

NOνA
NH 0.093+0.079

−0.048

IH 0.157+0.106
−0.082

MINOS∗ NH 0.051+0.038
−0.030

IH 0.093+0.054
−0.049

Experiment Value (10−3 eV2)

Daya Bay

2.3 2.4 2.5 2.6 2.7 2.8

|∆m2
32| (10−3eV2)

2.45±0.08

T2K 2.545+0.081
−0.084

MINOS 2.42±0.09

NOνA 2.67±0.12

Super-K 2.50+0.13
−0.20

IceCube 2.50+0.18
−0.24

RENO 2.57+0.24
−0.26

Figure 2: Left: comparison all recent measurements of sin2 2θ13. Right: comparison of all

recent measurements of ∆m2
32 [4].
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• Study of the evolution of nuclear fuel in time [5];

• Combined search for sterile neutrinos with MINOS experiment [6];

• Study of quantum coherence of neutrino oscillations in wave packet approach [7] and etc.
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2 Software

The analysis of experimental data introduces huge computational costs. For example, in the

Daya Bay experiment more than 250 parameters are included into the minimization process,

even though the majority of them are constrained. And it is just one intermediate step of the

analyzing algorithm that is repeated a lot of times.

GNA (Global Neutrino Analysis) [8] is the software for analyzing data of neutrino experi-

ments. Currently it is devoted to the analysis JUNO and Daya Bay. It also planned to include

other experiments (accelerator, atmospheric) into analysis. It is designed with having joint anal-

ysis of various experiments in mind.

The flexible design is required to perform the data analysis, especially the joint one. GNA

framework consists of separate modules that can be combined into the computational chain. The

calculation result of each module is cached and recalculated only when it is really needed, i.e.

when the parameters or inputs of these modules are modified. Such a design strongly suggests

to investigate the possibility of using various kinds of parallel computing technologies.

Modules that represents different approaches to the similar problems are interchangeable

and have the same interfaces. The approach is illustrated by the further example of Poisson and

χ2 modules. The mathematical description is presented in the section 3. An example of using it

and comparing the results can be found in section 4.1.

There exist another tools for the neutrino analysis, but most of them are proprietary. An

example of free software aimed to the similar problem is GLoBES, [9]. This package to date is

obsolete, the latest release was presented at 2007.

The user interface of GNA is implemented in Python as it provides some useful features to

parse command line commands, draw figures and link modules. Data analysis algorithms are

implemented in C++. The interface is linked with C++ backend via PyROOT.

To run GNA it is necessary to call it via python. It works as a framework and can be executed

with different parameters depending on the analysis requirements. Here is a short example of

script that draws a spectrum with two peaks with different energies and widths and then saves

it into file:

python gna -- gaussianpeak --name peak1 \

-- gaussianpeak --name peak2 \

-- ns --value peak1.E0 2 --value peak1.Width 0.2 \
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-- ns --value peak2.E0 4 --value peak2.Width 0.1 \

-- spectrum --plot peak1/spectrum --plot peak2/spectrum \

--savefig task1.png

On C++ side the Eigen library is used for working with matrices and vectors, [10]. Eigen

is the state-of-the-art library providing useful features for math operations. It is implemented

using the expression templates to build expression trees at compile time and to generate custom

code to evaluate it. Expression templates allow to intelligently remove temporaries and enable

lazy evaluation, when that is appropriate. The library performs its own loop unrolling and

vectorization to achieve better performance. Bearing that in mind, Eigen provides easy to use

interface and fine optimized computational kernels.

3 Mathematical background

In this section we describe mathematical methods used in considered parts of project. More

details about applying it in the context of GNA framework can be found in section 4.

3.1 Gaussian probability density function

Normal (or Gaussian) distribution for the vector x ∈ Rk can be defined by the probability

density function. In case of multivariate normal distribution this function is usually presented

the following way:

f(x) =
1√

(2π)k|V |
e−

1
2
(x−µ)TV −1(x−µ), (3)

where k — the length of vector x, µ — the mean or expectation of the distribution, V —

non-singular covariance matrix representing the widths and correlations of vector x.

In case of V being an identity matrix and µ being zero vector it is called standard normal

distribution.
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3.2 χ2 function

χ2 distribution with k degrees of freedom is the distribution of sum of squares of k indepen-

dent normal variables. The χ2 function is commonly used in data analysis as experimental data

is often close to be normally distributed.

Let x be an experimental data, a vector size of N , µ is the hypothesis that is tested. It de-

pends on K unknown parameters θ and M parameters of model η0. Lets consider the likelihood

function:

L(x, θ, η) =
1√

(2π)N |Vstat|
e−

1
2
(x−µ(θ,η)) 1√

(2π)M |Vη|
e−

1
2
(η−η0)TV −1

η (η−η0), (4)

where Vstat — matrix of statistical errors of x and Vη is the matrix of η parameter errors.

This function shows a probability of spectrum detection with parameters θ and η in case of

normal distribution hypothesis.

In case of linear approximation µ is the sum of normally distributed variables so this function

seems the following way:

L(x, θ) =
1√

(2π)N |V |
e−

1
2
(x−µ(θ,η0))TV −1(x−µ(θ,η0)), (5)

χ2 = (x− µ(θ, η0))
TV −1(x− µ(θ, η0)), (6)

where V is a full covariance matrix includes statistics ans systematic errors.

The best asymptotically unbiased estimation (under some assumptions, see [11]) of the pa-

rameters θ is obtained by the maximization of the likelihood function:

θ̂ = arg max
θ

L(x, θ). (7)

The minimization of χ2 function, eq. (6), is equivalent to the maximization of likelihood func-

tion.

Construction of the confidence intervals for parameters estimated in Gaussian case is straight-

forward. It is defined by the boundaries of the parameter region inside which

∆χ2 = χ2(θ)− χ2(θ̂) < αCL (8)
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is hold, where αCL is corresponding quantile of χ2-distribution. The common choice of ∆χ2 =

1 corresponds to the 1 σ confidence interval.

Within the GNA framework χ2 module is used to estimate the parameters and their uncer-

tainties. Cholesky decomposition of the covariance matrix is used for computational efficiency:

V = LLT , (9)

where L is a lower triangular matrix. The χ2 function can be expressed in the following form:

χ2 = yTy, (10)

y = L−1(x− µ). (11)

More information can be found in [12].

3.3 Poisson probability density function

The probability mass function for Poisson distribution is

f(x, µ) =
(µxe−µ)

x!
. (12)

This means that f(x, µ) is a probability of observing x events, where µ is the average num-

ber of events.

For large values of x Poisson distribution converges to the normal distribution. Therefore,

there is no difference what to use in case of high density of events, [13]. If the number of events

is low, it is preferable to use Poisson statistic due to the so-called law of small numbers.

Let x and µ be N -dimensional vectors. The expression for Poisson likelihood reads:

L(x|µ) =
N∏
i=1

(µxii e
−µi)

xi!
. (13)

For the extremum finding purpose it can be replaced by a natural logarithm of L since a

logarithm is a monotonic function:

− 2 logL(x|µ) = −2
N∑
i=1

(xi log(µi)− µi − log(xi!)). (14)
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The maximization of this function yields the same result for parameters estimation as in

case of using (13).

3.4 Feldman-Cousins approach

The confidence levels that are derived in conventional methods of parameters estimation,

like in (8), may not represent the true confidence interval in a number of situations:

• The systematic errors are not Gaussian. That is quite common case;

• The dependence of the model on the parameters of interest is not linear. Common case: a

physical boundary in parameter space, for example sin2 2θ ≤ 1;

• Small number of events.

In order to construct correct confidence in such a cases two approaches can be used: Bayessian

approach that brings subjective choice of priors, and frequentists approach known as Feldman-

Cousins approach, [14]. Feldman-Cousins approach consists of the following steps:

• Extensive toy Monte-Carlo simulations of the experiment in every point of parameter

space;

• Based on the generated sample the empirical distribution of ∆χ2 between best fit and toy

models is determined, so all models have to be fitted with the theoretical model;

• Based on that empirical distribution the confidence level is constructed.

It is extremely computationally costly, it can require a generation of more then 10000 toy ex-

periments and fitting all of them at each point of the parameter space. One of the ways of

accelerating that procedure is described in the section 4.2.
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4 Summer Student Program experiences and results

During the first week of the Summer Student Program (SSP) the basics of the GNA project

— structure and usage — were studied. The introductory task was to generate the energy distri-

bution of events for the JUNO experiment in hypothesis of normal hierarchy with a fixed value

of ∆m2
ee and then to see whether it can be fully described in the hypothesis of inverted hier-

archy. The quantitative measure of how well the spectra can be distinguished is the difference

of minimal values of χ2 of the fits of both hypotheses to the generated spectrum. The fits have

been performed over ∆m2
ee parameters.

The profiles of χ2 versus ∆m2
ee can be found in the Appendix 1. On Figure 8a there is a

profile of χ2 versus ∆m2
ee in the hypothesis of normal hierarchy. On Figure 8b — the profile

of χ2 versus ∆m2
ee in the hypothesis of inverted hierarchy. One can see that minimums of χ2

reside in a different regions of parameter space and there is a difference between them. Even the

best fit of hypothesis of the inverted hierarchy does not fully reproduce the generated spectrum.

It is illustrated on the Figure 3. It is impossible for them to be exactly the same, and it is the

basis for future neutrino mass hierarchy determination in JUNO.
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Figure 3: The comparison of the best matching spectra for different hierarchies.
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Then there were a number of tasks to extend the framework. The following tasks are con-

sidered:

1. Poisson module: returns Poisson log-likelihood value;

2. Grid Filter: computes extended cross-section with a given value;

3. CUDA integration: CUDA and cuBLAS support added to the project;

4. Parallelism: opportunities of using parallel technologies were considered;

5. Unit tests and documentation were added for implemented for implemented modules.

In the GNA project there is a number of user guides that are generated by Sphinx. There is

also the doxygen configuration file that generates documentation based on comments automati-

cally. During the work with the implemented modules doxygen comments were written. After

that the corresponding user guide pages were added.

4.1 Poisson

In the GNA there exists module for computing the value of the χ2 function. The goal was

to implement Poisson module to compute log-poisson value. The module should have the inter-

faces as χ2 to enable easy substitution between them. The using of the Poisson statistic is more

suitable for cases of low density of events, for example, for accelerator neutrino experiments

such as NOνA.

The implementation of this module is based on the natural logarithm of Poisson likelihood.

As the part of this sum is a factorial, gamma-function was used here to compute the approximate

value Γ(n) = (n − 1)!, where n ∈ N . An approximate expression may be used optionally:

log(n!) ≈ n log(n)− n.

There was added a set of test scripts to demonstrate the work of Poisson module and compare

it to χ2.

As a theoretical model the Gaussian-shaped peak with a flat background was used. The

model is described by the following formula:

dN

dE
= b+ µ

1√
2πw

exp
−(E − E0)

2

2w2
, (15)
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where: N — number of events; b — constant background, caused by equipment features, cos-

mic rays, etc.; µ — signal strength. The more µ is, the higher Gaussian peak raises. w — peak

width; E0 — position of the peak that is the position where curve maximum is obtained.

Background, signal strength, peak width and position of the peak can be set from the com-

mand line. Parameters that are not included in the formula such as the number of bins and

peaks, maximum and minimum allowable values of E, integration order also can be set by user.

By formula (15) expected spectrum was generated. Another spectrum was created to be fit.

The two samples of data were generated:

• Asimov data sample that is basically theoretical predicted spectrum with a fixed parame-

ters of interest;

• A sample obtained from Poisson distribution with Asimov data as mean values.

Using both of generated samples the value of the parameter µ has been estimated with both χ2

and Poissonian statistics, (15). Statistic profiles are shown at right-hand side of Figures 4 and

5. On the left side figures four curves for different cases described above are presented.

On the Figure 4 there is a Poisson likelihood and χ2 functions profile with a low density of

events. On the Figure 5 there is a profile for the high density of events.

4.2 Grid Filter

Grid Filter is a helper module that will be integrated into Feldman-Cousins algorithm

in the future. It is necessary to optimize computations as Feldman-Cousins is a computationally

expensive algorithm. The idea is to discard points with a low probability from the analysis. That

is the based on the observation that quite often Feldman-Cousins go quite close to conventional

χ2 one, Figure 6.

Here is a description of this filter. Consider z = f(x, y) being a two-dimensional function.

A 2-dimensional array consisting of z values is expected as input for the Grid Filter mod-

ule. The range of x and y can be set by user. There are also can be set some input parameters:

val, err. The API of this module provides the following possibilities:

1. Compute the cross-section. Output is a mask with 1 for the points at z = val± err and 0

for the other (discarded) points;
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2. Compute extended cross-section:

• With fixed deviation from the original cross-section set by user;

• With the automatically computed deviation depending on the average value of gra-

dient vectors length across the original cross-section;

• With the automatically computed deviation depending on the gradient vector length

at every point.
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Figure 7: Left: Fixed contour width. Right: Irregular contour width. L is the value of function,

around which the points are distributed.

The difference between cross-sections with the fixed and irregular width of extended contour

is shown at Figure 7.

There also exist special parameters like gradient influence and initial deviation that are just

multipliers for gradient value at the formulae of deviation computing. Parameter tolerance sets

the allowable error at z = val± err expression. It provides more flexible interface but does not

make it more difficult to use as there are default values set. After initialization of the algorithm

parameters described above can not be altered.

There are more examples in Appendix 2 and Appendix 3 of usage of this module. In the

Appendix 2 it is shown how does the gradient multiplier influences the width of extended cross-

section contour. Appendix 3 demonstrates the influence of tolerance parameter. Considered

parameters are set from the command line and parsed by python test script.
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4.3 CUDA integration

Graphical processing units (GPU) are widely used today not only for image processing but

also in science applications. GPUs are known for the huge number of threads so it is appropriate

for SIMD-oriented (Single Instruction Multiple Data) codes, such as independent operations

over elements of arrays.

CUDA Toolkit (Compute Unified Device Architecture) is a powerful tool that helps to port

code into NVIDIA GPGPUs (General-purpose GPU) and provides extensions for C and C++,

[15]. CUDA architecture allows to accelerate software by effective using of GPU threads and

memory access. Threads are logically unified into blocks that are, in turn, unified into grids.

Sizes of grids and blocks can be set from the host code. There is a special memory hierarchy

that provides some types of it with distinct permissions.

CUDA support was added to the project. There was implemented an example of using

CUDA-based library cuBLAS (Basic Linear Algebra Subprograms). In the future it is planned

to add GPU-based implementation of some algorithms and a possibility to choose whether GPU

have to be used or not.

There is an API for basic math operations including matrices operations. By design the

GNA is expected to deal with huge dense matrices. This suggests that using cuBLAS can lead

to increase of the computational efficiency under certain conditions that are to be studied.

4.4 Parallelism

There is no custom multithreading in the current GNA implementation. Better performance

is achieved by caching and highly optimized third-party libraries and compiler optimizations

only. It was decided to find the code fragments that can run in parallel or be modified for it.

The first problem we faced was the absence of unit tests at the C++ side. Profiling through

the python interface creates a lot of intermediate calls in call graph that hide actual compu-

tations. For that reason C++ unit tests implementation for all the computationally expensive

modules is one of the tasks ahead.

The possibility of using multi-core CPUs (Central Processing Unit) and GPUs to accelerate

the existing code is being considered now. We plan to use not only standard C++ multithreading

for CPUs but also such external standards as OpenMP, [16]. It provides a convenient interface

that will help to keep code clean. Furthermore, it is supported by the most compilers.
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The main goal is to adapt GNA to heterogeneous computational systems and to provide to

the user an interface to choose the desired architecture.
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5 Conclusion

In this report modules that were implemented during the SSP (Poisson and Grid

Filter) are described. A short introduction about the GNA framework, its mathematical

and physical background is presented.

Poisson module was integrated into existing code base. Python interface for it was imple-

mented. It is currently possible to use it along with χ2 module that is a part of GNA implemented

earlier.

Grid Filter module was added like standalone module. The reason for this is that

Grid Filter is a part of a bigger algorithm not yet fully implemented.

For both modules python tests and detailed documentation were written.

We also analyzed existing code base from a perspective of better performance. We are

planning to port a part of GNA code to GPGPU by using CUDA and CUDA-based libraries

such as cuBLAS.

CuBLAS support was added to project and it is planned to add a possibility to port some

SIMD-oriented code fragments to GPGPU upon user requests. We plan to modify project to

adapt it for heterogeneous systems as it seems to be useful to deal with huge datasets.

It is also planned to implement Feldman-Cousins algorithm using existing Grid Filter

to filter out the points with low probability to find the contour.
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Appendix 1

GNA test: fitting ∆m2
ee value in the hypothesis of normal and inverted hierarchy. The true

hierarchy is normal.
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Figure 8: Profile of χ2 in the hypothesis of normal and inverted hierarchy. The true value is

marked by vertical line.
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Appendix 2

Grid Filter tests for a different gradient influence values on three levels.
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Figure 9: Test for different gradient influence parameter values. L is the value of tested function
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Appendix 3

Grid Filter tests for a different tolerance values on three levels.
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Figure 10: Test for different tolerance parameter values. L is the value of tested function
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