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Abstract

We study the transport properties of an inversion breaking Weyl semi-metal at the normal to super-
conducting interface. Here the superconducting gap pairs electrons in a certain node to the opposite
branch in its time reversal partner of the same chirality. We follow the paper of Zhang et al. [1] for
singlet superconductivity and expand to triplet superconductivity. We have found that the location
of the Weyl nodes in momentum space dominates the physics and results in the same behavior as for
singlet pairing. We recommend repeating the calculations for the time reversal symmetry breaking
Weyl semi-metal where the superconducting gap is zero at the nodes.
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1 Introduction

We study the transport properties between a junction of a normal Weyl semi-metal (WSM) and
a superconducting WSM. WSMs have special nodes in their band structure where momentum and
spin are locked relatively to each other. At these nodes the dispersion is linear in three dimensions.
As such the Hamiltonian shows clear resemblances to the Dirac Hamiltonian as found in graphene.
Similarly to the two dimensional K points in graphene, Weyl nodes also come in pairs depending
on the symmetries of the system. Weyl semi-metals discern themselves by having a non-degenerate
band structure around the Weyl node, which requires three dimensions to achieve. Until a few years
ago this state of matter was merely theory but has recently been discovered in tantalum phosphide
[2] and tantalum arsenide [3]. We interest ourselves in how this locking interacts with the coupling of
electrons with opposite spin and momentum in a WSM superconductor where superconductivity can
be induced by proximity effect. We follow the paper of Zhang et al. [1] for singlet superconductivity
and expand to triplet superconductivity.

2 Singlet junction

2.1 Time reversal symmetric Weyl semi-metal

A WSM is a topological phase of matter in three dimensions, where the non-degenerate conduction
and valence band touch in certain points with a linear dispersion. When either inversion or time-
reversal symmetry (TRS) is broken spin and momentum lock to form pairs of chiral Weyl nodes: one
with spin and momentum in the same direction (positive chirality) and one with opposite direction
(negative chirality). Breaking of either symmetry separates the pair in momentum space and as
such protects them from local perturbations. We choose to break inversion symmetry and keep
TRS which requires a node of a certain chirality to have a TRS partner of the same chirality and
opposite momentum. The minimum number of nodes for inversion breaking is four, where the
distinct chiralities are decoupled. We describe such a system with the low energy Hamiltonian [1]:

H(k) = (kx ∓ k̄x)σx + kyσy + (kz ∓ k̄z)σz, (1)

with each combination of signs constituting a different Weyl node. Two identical signs indicate
positive chirality while opposite signs negative. The nodes are at the zeros of energy: ±(k̄x, 0,±k̄z),
see figure 1, with k2

F = k̄2
x + k̄2

z the Fermi wavevector at the Weyl node.

pz

px

Figure 1: An inversion breaking Weyl semi-metal has four nodes at ±(k̄x, 0, k̄z), two of each chirality.
TRS couples nodes of the same chirality, as such the minimal amount of nodes is four.
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A WSM-superconductor is described by the Bogoliubov-de Gennes (BdG) Hamiltonian. We
consider a junction with propagation along the z-axis: the WSM is in the normal state for z < 0 and
in the superconducting state for z > 0. As such we wish to transform the Hamiltonian of equation
1 back to position space for use in the BdG Hamiltonian. A unitary transformation in real space
allows us to move the dependence on these constants to the basis states. The basis states acquire
a position dependent complex phase of e±ik̄xx±ik̄zz. Additionally we include a chemical potential µ
relative to the Weyl point to get the Hamiltonian for a Weyl node:

H ′ =

(
−i∂z − µ k‖e

−iθ

k‖e
iθ i∂z − µ,

)
(2)

in the basis Φe,1 = (c1,↑, c1,↓)
T . Here we have assumed plane wave solutions in the x-y plane with

transverse momentum k‖ and azimuthal angle θ. The Fermi velocity and ~ are set to one so the
wavevector and energy have the same units.

2.2 Singlet superconductivity

Now we consider how the Hamiltonian changes when we induce superconductivity (SC) for z > 0
by means of the proximity effect. The SC gap couples electrons with their time-reverse counterpart
in the other Weyl node of the same chirality. The time reversed basis is the complex conjugate
of the normal electron basis and has an opposite complex phase coming from k̄x and k̄z. The
contribution to the energy from the gap is proportional to the overlap between electron and time
reversed wavefunctions of node i and j [1]:

∆Eij ∝
1

Ω

∫
drΦ∗h,iΦe,j =

1

Ω

∫
dr eik̄x(σj,k̄x

+σi,k̄x
)x+ik̄z(σj,k̄z

+σi,k̄z
)x, (3)

with σi,a the sign of constant a with respect to node i. If the signs are not opposite for both constants
the phases interfere destructively and the contribution to the energy is negligible for k̄xLx � 1 and
k̄zLz � 1 with Lx and Lz the system dimensions in the x and z direction. As such electrons can
only couple to the holes in the other Weyl node of the same chirality. The BdG Hamiltonian for the
N-S interface now reduces to four blocks of identical form:

hBdG =


−i∂z − µ(z) k‖e

−iθ ∆(z) 0
k‖e

iθ i∂z − µ(z) 0 ∆(z)
∆∗(z) 0 i∂z + µ(z) −k‖e−iθ

0 ∆∗(z) −k‖eiθ −i∂z + µ(z)

 , (4)

in the basis Φ(r) =
(
c1,↑(r) c1,↓(r) c†2,↑(r) −c†2,↓(r)

)T
and with ∆(z) the SC gap.

We now choose ∆(z) = ∆0eiφΘ(z), with φ the superconducting phase, and µ(z) = µNΘ(−z) +
µSΘ(z) with ∆0 > 0 and Θ(z) the Heaviside step function. The eigenstates of this Hamiltonian
describe the particles involved in the scattering process at the interface between the normal WSM
and the SC WSM. The eigenenergies are given as ε = ±

√
|∆2 + (|k| ± µ)2 with the first ± indicating

the branch and the ±µ the electron/hole-like nature of the particle.

2.3 Reflection and transmission

We restrict ourselves to the scattering of an incoming electron which can reflect as an electron or
hole, or get transmitted as an electron/hole-like quasi-particle as shown in figure 2. The BTK model
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∆0
µN µS

ϕ−→e

ϕ←−
h

ϕ−→eq

ϕ−→
hq

ϕ←−e

Figure 2: The scattering of an incoming electron ϕ−→e at the interface with a SC. It can reflect as an
electron ϕ←−e or a hole ϕ←−

h
or gets transmitted as a quasi-particle of electron-like ϕ−→eq or hole-like ϕ−→

hq

nature. Take note that the scattered holes belong to the other Weyl node of the same chirality.

[4] expresses the scattering process in terms of reflection coefficients a0 (electron) and b0 (hole) and
transmission coefficients c0 (electron-like) and d0 (hole-like). The total wave equation is the sum
of incoming and reflected wavefunctions in the normal region and transmitted wavefuctions in the
superconducting region:

Ψ(z) =

{
ϕ−→e (z) + b0ϕ←−e (z) + a0ϕ←−h (z), z < 0

c0ϕ−→eq(z) + d0ϕ−→hq(z), z > 0
(5)

Here the arrows indicate the direction of the group velocity of the respective particles. The group
velocity of a hole-like particle is the inverse of the one an electron-like particle would have in a
similar state. The relevant wavefunctions in the normal region are:

ϕ−→e (z) =
(
1 κee

iθk 0 0
)

eikez, (6)

ϕ←−e (z) =
(
κee
−iθk 1 0 0

)
e−ikez, (7)

ϕ−→
h

(z) =
(
0 0 −κhe−iθk 1

)
e−ikez, (8)

ϕ←−
h

(z) =
(
0 0 1 −κheiθk

)
eikhz, (9)

with ke(h) = sgn(µN ± ε)
√

(µN ± ε)2 − k2
‖ and κe(h) = ±(µN ± ε− ke(h))/k‖. When |µN − ε| < k‖

a hole reflection is non-physical. Here we set kh = 0 and κh = 1.
In the superconducting region the quasi-particle wavefunctions are:

ϕ−→eq(z) =
(
1 κeqe

iθk e−iβ−iφ κeqe
−iβ−iφ+iθk

)
eikeqz, (10)

ϕ←−eq(z) =
(
κeqe

iθk 1 κeqe
−iβ−iφ−iθk e−iβ−iφ

)
e−ikeqz, (11)

ϕ−→
hq

(z) =
(
−κhqe−iβ+iφ−iθk e−iβ+iφ −κhqe−iθk 1

)
e−ikhqz, (12)

ϕ←−
hq

(z) =
(
e−iβ+iφ −κhqe−iβ+iφ+iθk 1 −κhqe−iθk

)
eikhqz, (13)
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with keq(hq) = sgn(µS ±Re(Ω))
√

(µS ± Ω)2 − k2
‖ and κeq(hq) = ±(µS ±Ω− keq(hq))/k‖. For subgap

energies ε ≤ ∆0: β = arccos(ε/∆0) and Ω = i
√

∆2
0 − ε2, for supragap energies: ε > ∆0: β =

−iarccosh(ε/∆0) and Ω = sgn(ε)
√
ε2 −∆2

0. Note that for ε � ∆0 the transmitted wavefunctions
tend to the ones we expect for a normal WSM.

The total wavefunction must satisfy continuity at the interface both of the probability current and
the wavefunction itself. The former requires normalization of the individual particle wavefunctions
with the respective particle group velocity. The latter uniquely defines the coefficients a0, b0, c0,
and d0 (these are given in the appendix). The reflection and transmission coefficients are equal to
the ratio of the normal components of the probability currents of the respective particle and the
incident electron. Given f the normalized electron-like and g the normalized hole-like components
of the wavefunction the probability current:

−→
J P =

1

m
(Im(f∗∇f)− Im(g∗∇g)), (14)

notice that the electron-like and hole-like wavefunctions contribute different signs.
The reflection and transmission coefficients are:

Reh =
|(κ2

e − 1)(κhqκeq + 1)|2

|γ|2Zh
|, (15)

Ree = |γ|−2|eiβ(κhκhq − 1)(κe − κeq)− e−iβ(κh + κeq)(κeκhq + 1)|2, (16)

Tee =
∣∣1− |e2iβ |

∣∣ |(κ2
e − 1)(κhκhq − 1)|2

|γ|2Zeq
, (17)

Teh =
∣∣1− |e−2iβ |

∣∣ |(κ2
e − 1)(κeq + κh)|2

|γ|2Zhq
, (18)

with

γ = (κeκeq − 1)(κhκhq − 1)eiβ + (κhq + κe)(κeq + κh)e−iβ , (19)

Zh =

(
1 + |κe|2

1 + |κh|2

)
·
∣∣∣∣ε− µNε+ µN

∣∣∣∣ · ∣∣∣∣ kekh
∣∣∣∣ , (20)

Zeq =

(
1 + |κe|2

1 + |κeq|2

)
·
∣∣∣∣Ω + µS
ε+ µN

∣∣∣∣ · ∣∣∣∣ kekeq
∣∣∣∣ , (21)

Zhq =

(
1 + |κe|2

1 + |κhq|2

)
·
∣∣∣∣Ω− µSε+ µN

∣∣∣∣ · ∣∣∣∣ kekhq
∣∣∣∣ . (22)

In figure 3 we plot examples of the behavior of the coefficients in the subgap and for the supragap
at identical chemical potential for the normal WSM and the superconducting WSM.
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(a) Subgap: ε = 0.7∆0 withµN = µS = 0.1∆0.
There is no transmission possible soRee +Reh =
1. For k‖ ≥ ε − µN the holewavevector kh be-
comes zero and we have only electron reflection:
Ree = 1.

(b) Supragap: ε = 1.3∆0 with µN = µS =
0.1∆0. Reflection of a hole is possible for k‖ <
ε − µN , transmission of electron-like particles is
possible for k‖ < Ω+µS and of hole-like particles
for k‖ < Ω − µS .

Figure 3: The reflection and transmission coefficients in the sub- and supragap for identical chemical
potential as a function of the transverse momentum k‖. The sum of all four coefficients always equals
one.

2.4 Differential conductance

The reflection coefficients define the relative current coming from an incoming electron with trans-
verse momentum k‖ and charge e: if the electron passes the interface the relative current is one, if
it reflects as an electron the net current is zero and if it reflects as a hole (transmits as a Cooper
pair) the relative current is two. As such we give the normalized conductance as:

gNS =
1

π(µN + ε)2

∫
A

dk‖(1−Ree +Reh), (23)

which is the differential conductance dI/dV per channel. Here the integration area A is such that
|k‖| ≤ |µN + ε| since the kinetic energy of the particle cannot exceed the total particle energy.
For singlet superconductivity we have rotational symmetry in the azimuthal angle and the integral
reduces to 1d.

This integral leads to the same conductance plots, figure 4, and zero bias plot, figure 5, as found
in the paper by Zhang [1] with non-equivalent formulas. We have however been able to reproduce
the plots with the formulas in the paper on the condition that we add π/2 to the α̃h given in the
paper.
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Figure 4: Normalized differential conductance for various values of µS = µN as a function of the
energy ε. When ε = µ < ∆0 the conductance goes to zero as there is no hole state to reflect to. When
ε = ∆0 transmission of particles becomes possible resulting in a discontinuity in the conductance.
When µ ≈ 0 we have perfect Andreev reflection and a conductance of 2.

Figure 5: Normalized differential conductance at zero bias for various combinations of µN and
µS . Maximal conductance occurs when the two chemical potentials are equal and perfect Andreev
reflection result in normalized conductance of two.
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3 Unconventional superconductivity

3.1 Triplet pairing for TRS-breaking WSM

We now wish to expand on the result of the paper by Zhang [1] by adding a momentum dependence
to the superconducting gap ∆. Schnyder [5] describes the possibility of a Anderson-Brinkman-Morel
(ABM) state in a Weyl semi-metal with triplet-wave pairing: ∆ = ∆0(px + ipy)/kF . Here px and py
refer to the system momenta, while kx and ky refer to the linearized momenta around the Weyl nodes
located at (0, 0,±kF ) for a TRS breaking WSM. Schnyder gives the linearized BdG Hamiltonian of
such a system as:

H(k) = h(k)τz +
∆0

kF
k · (ê1τx + ê2τy), (24)

with h(k) the normal WSM dispersion and τi the Pauli matrices acting on particle-hole space. The

eigenenergies of this Hamiltonian are ε(k) = ±
√
|h(k)|2 + (∆0/kF )2(k2

x + k2
y).

Here the triplet pairing is not able to gap out the Weyl nodes in the superconducting region
since the gap is zero for px = py = 0. This in contrast to the BCS case we studied before where
transmission of particles is suppressed below the gap.

3.2 Triplet pairing for inversion-breaking WSM

We now apply the ABM pairing to our inversion-breaking WSM. The triplet-pairing is non-zero at
our Weyl nodes at ±(k̄x, 0,±k̄z) for non-zero k̄x which is required for our argument for suppression
of intraband coupling to hold (k̄xLx � 1). In the low energy limit around the Weyl node the pairing
becomes: ∆ = ∆0(k̄x + k‖e

iθ)/kF , breaking the azimuthal symmetry required to reduce the integral
of the normalized conductance (23) to 1d. When k̄x � k‖ we can neglect this symmetry breaking
contribution and get the same conductance as before, albeit with the gap scaled by k̄x/kF .

In fact this ratio times ∆0 gives the relevant energy scale for the system. The interesting physics
happens for energies ε of the order of the gap. The transverse momentum is however bounded by
the energy of the incoming particle plus the chemical potential:

k‖ .
|k̄x + k‖e

iθ|
kF

∆0 + µN . (25)

Since kF � µN ,∆0 and k‖ we state k‖ . k̄x/kF : interesting ε are of the order of k̄x/kF in units of
∆0. We take our effective gap ∆̄0 to be ∆0 · k̄x/kF while we keep our units in ∆0.

For our theoretical model we set kF = 20 and ¯̄kx = 4 in units of the gap ∆0. Realistically kF
should be significantly larger even for high values of Tc (and as such large values for ∆0) but this
drowns out the θ dependence. For instructive purposes we take these values to stay in a low energy
limit (ε ≈ ∆̄0 = kF /100) but still have visible results.
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3.3 Reflection and transmission for triplet sub-gap

(a) Heatmap of Ree, for k‖ > ε−µN all incoming
electrons are reflected as electrons.

(b) Heatmap of Reh, for k‖ > ε−µN there are no
hole states with enough total momentum to sup-
port k‖ and the probability of Andreev reflection
goes to zero.

(c) Heatmap of Tee, there is zero probability of
transmission in the sub-gap.

(d) Heatmap of Teh, there is zero probability of
transmission in the sub-gap.

Figure 6: Reflection and transmission coefficients for triplet pairing at ε = 0.7∆̄0 and µN = µS =
0.1∆̄0, the effective sub-gap. Here the dependence of the gap on the azimuthal angle is negligible
since the position of the cut-off does not rely on the value of the gap. These plots are equivalent to
the ones in figure 3 with a scaled gap.
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3.4 Reflection and transmission for triplet gap-edge

(a) Heatmap of Ree, for k‖ > ε−µN all incoming
electrons are reflected as electrons. For θ ≈ 0
a parabolic sub-gap region forms where the
probability of reflecting as an electron goes to
zero.

(b) Heatmap of Reh, for k‖ > ε − µN Andreev
reflection is impossible. For θ ≈ 0 a parabolic
sub-gap region forms where Andreev reflection
dominates. For θ around 1/2 we are in the supra-
gap with a probability spike when transmission
of particles becomes impossible: ε > Ω + µS .
Ω is close to zero here and is more sensitive to
fluctuations of θ.

(c) Heatmap of Tee, there are two ”wave fronts”,
one for ε = Ω + µS and one for ε = Ω − µS with
transmission more likely in the latter.

(d) Heatmap of Teh, for k‖ . Ω−µS transmission
is most likely. The probability is however still
below 0.01 so its contribution to conductivity is
negligible.

Figure 7: Reflection and transmission coefficients for triplet pairing at ε = 1.02∆̄0 and µN = µS =
0.1∆̄0, just beyond the effective gap edge. Here the dependence of the gap on the azimuthal angle
is the most pronounced since the value of θ decides whether a certain region is in the supra- or
sub-gap.
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3.5 Reflection and transmission for triplet supra-gap

(a) Heatmap of Ree, for k‖ > ε−µN all incoming
electrons are reflected as electrons. This reflec-
tion becomes significant for k‖ > Ω + µS as is
also apparent for singlet pairing in figure 3b.

(b) Heatmap of Reh, similarly as for the singlet
pairing as in figure 3b we have a sharp peak in
reflection probability for k‖ = Ω + µS where we
clearly see the sine-like behavior of the gap.

(c) Heatmap of Tee, for small transverse mo-
mentum transmission of electrons dominates the
scattering process.

(d) Heatmap of Teh, a shifted version of the
transmission of holes for ε = 1.02∆̄0 as in fig-
ure 7d but with higher probability.

Figure 8: Reflection and transmission coefficients for triplet pairing at ε = 1.3∆̄0 and µN = µS =
0.1∆̄0, in the effective supra-gap. Here the dependence of the gap on the azimuthal angle is clearly
visible in the region Ω− µS . k‖ . Ω + µS . These plots coincide with those in figure 3b for singlet
pairing with a scaled gap.
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3.6 Triplet differential conductance

The triplet differential conductance is defined in the same way as the singlet differential conductance
in equation (23). In figure 9 we see the triplet conductance for the equivalent values as in the singlet
case, see figure 4. The behavior in the sub-gap and supra-gap are close to identical while at the gap-
edge the conductance changes more smoothly. Accordingly there is no change to the zero-bias plot
respective to figure 5 for the singlet since ε = 0 always lies in the sub-gap. Here the θ dependence
is negligible as we have seen in the sub-gap triplet reflection and transmission plots (figure 6). As
kF becomes larger relative to the maximal gap ∆0 the jump at the gap edge reduces in width. For
kF > 100∆0 the difference between the triplet and singlet case becomes close to indistinguishable
for the whole energy spectrum. The only real effect is scaling of the gap by the position of the Weyl
node in momentum space.

Figure 9: Normalized differential conductance for various values of µS = µN as a function of the
energy ε for triplet pairing. When ε = µ < ∆̄0 the conductance goes to zero as there is no hole
state to reflect to. Compared to figure 4 with singlet pairing the conductance smoothes around the
gap-edge ε = ∆̄0. In the sub-gap and supra-gap we see the same behavior as for singlet pairing
albeit with a scaled gap.
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4 Conclusion

We have studied a TRS preserving WSM where an interface is created between a normal region and a
superconducting region by means of the proximity effect or doping. We considered four Weyl nodes,
two of each chirality, where the superconducting gap pairs electrons of one branch to the opposite
branch in the TRS partner which has the same chirality. We have reproduced the differential current
per channel singlet pairing as found by Zhang et al. [1]. Expanding on their research, we have
replaced the singlet pairing with the triplet pairing: ∆ = ∆0(px+ ipy)/kF . The Fermi wavevector is
much larger than the linearized momenta allowed in the low energy approximation around the Weyl
nodes. As a consequence the location of the Weyl node dominates the amplitude of the gap. As such
TRS preserving WSM do not show significantly different behavior for triplet pairing compared to
singlet pairing. We suggest further research to repeat the work for a TRS breaking WSM junction
with triplet pairing.
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Appendix

Reflection and transmission coefficients

Since only the absolute coefficients are important for calculation of the reflection coefficients we can
discard the complex phases φ and θ:

a0 = c0e−iβ − d0κhq,

−κha0 = c0κeqe
−iβ + d0,

Now we can express both a0 and c0 in terms of d0:

c0 =
κhκhq − 1

κeq + κh
eiβd0,

a0 = −d0
κhqκeq + 1

κeq + κh
.

The electron-like components require:

1 + b0κe = c0 − κhqe−iβd0,

κe + b0 = c0κeq + d0e−iβ ,

equating the two gives an expression for d0:

d0 = γ−1(κeq + κh)(κ2
e − 1)

with:
γ = (κeκeq − 1)(κhκhq − 1)eiβ + (κhq + κe)(κeq + κh)e−iβ .

From this value of d0 we express the other coefficients as:

a0 = −γ−1(κ2
e − 1)(κhqκeq + 1),

b0 = γ−1[eiβ(κhκhq − 1)(κe − κeq)− e−iβ(κh + κeq)(κeκhq + 1)],

c0 = γ−1(κ2
e − 1)(κhκhq − 1)eiβ .

The particle group velocity is proportional to the absolute value of the probability current which is
proportional to the length of k which is of the form ε±µN in the normal WSM and |Ω±µS | in the
superconducting WSM. Besides the group velocity we also have to take into account the probability
current incident to the interface to get the normalization factors:

Ze =
|ε+ µN |

(1 + |κe|2) · |ke|
,

Zh =
|ε− µN |

(1 + |κh|2) · |kh|
,

Zeq =
∣∣1− |e−2iβ |

∣∣−1 · |Ω + µS |
(1 + |κeq|2) · |keq|

,

Zhq =
∣∣1− |e−2iβ |

∣∣−1 · |Ω− µS |
(1 + |κhq|2) · |khq|

,

where we have taken into account the minus sign coming from the holes in the probability current.
Since we normalize with respect to the incoming electron the reflection/transmission constants are:
Reh = |a0|2 · Ze/Zh, Ree = |b0|2, Tee = |c0|2 · Ze/Zeq and Teh = |d0|2 · Ze/Zhq.
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