
JOINT INSTITUTE FOR NUCLEAR RESEARCH

Bogoliubov Laboratory of Theoretical Physics

FINAL REPORT ON THE SUMMER STUDENT
PROGRAM

THERMODYNAMICS OF THE REAL SCALAR FIELD IN A FINITE VOLUME

Supervisor:
Alexandru S. Parvan

Student:
Carline Biesdorf

Participation period:
July 01 – August 11

Dubna, 2018



ABSTRACT

The Euler-Lagrange and Klein-Gordon Equations for the real and charged scalar field were obtained.
The Energy-Momentum Tensor for the real and charged scalar field were also derived. The Hamilto-
nian density was obtained through the Lagrange method and from the Energy-Momentum Tensor.
The current density was obtained. The solutions of the Klein-Gordon Equation were verified. The
momentum and energy for the real scalar field were obtained. The Noether Charge and Current
was calculated. In order to use the method of the canonical quantization, a profound study of the
one-dimensional Harmonic Oscillator was made and the results were generalize to a system of har-
monic oscillators. This knowledge was then used to quantize the Klein-Gordon field. The partition
function of the real scalar field, considering the chemical potential equal to zero, was then obtained
and the main thermodynamic quantities, such as thermodynamic potential, average of the number
of particles, average energy, average momentum and pressure were then calculated. The partition
function in the configuration space in one spatial dimension was obtained once again through the
path integral method and, using the discrete Fourier transform, the partition function in the mo-
mentum space was obtained and the generalization to the three spatial dimension was made. The
main thermodynamic quantities on the lattice were derived and, taking the continuum limit, the
energy and pressure were obtained and compared to the ones obtained through the method of the
canonical quantization.

I. INTRODUCTION

There are many methods of field quantization, such as the canonical method, and the path integral method, among
others. The thermodynamic properties of the QCD phase diagram are described by both the canonical quantization
formalism (second quantization) and the path-integral formalism.

The main aim of the project concluded at the Summer Student Program at JINR, which the present report describes,
was to obtain the partition function for the real scalar field in a finite volume by the canonical quantization method and
by the path integral method to then derive some main thermodynamic quantities and compare the results obtained
through the two methods.

The procedure used for the quantization of fields leads us to the concept of quantized fields. The quantized wave
field is a fundamental physical concept, within the framework of which the properties of elementary particles and
their interactions are formulated.

The sections II and III are devoted to the development of the canonical quantization method. In section II is
described a study of the classical theory of free fields where not only the the real scalar field was considered, but also
the charged scalar field.

If we consider a continuous system as a discrete mechanical system with an infinite number of degrees of freedom,
or, more precisely, an infinite number of field oscillators, we are enable to use the apparatus of classical mechanics
in studying the field. That is just what was made at section III. First we made a study of the harmonic oscillator
and then used this knowledge to quantize the Klein-Gordon Field and all the main results obtained in section II were
rewritten in terms of operators. With that, in section IV we were able to derive the partition function using the
method of the canonical quantization.

In section V the analytical derivations given in the paper [6] for the free real scalar field in the framework of the
path integral method were reproduced. The partition function was obtained in the configuration and momentum
space and some thermodynamic quantities were obtained and the results compared to the ones obtained at section
IV.

The main conclusions are summarized in section VI.

II. CLASSICAL THEORY OF FREE FIELDS

We begin by considering the classical theory of relativistic wave fields.

A. Derivation of the Euler-Lagrange Equations

In this subsection we deduce the equations of motion, also called Euler-Lagrange Equations. First we deduce them
for the neutral scalar field and after that for the charged scalar field.
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Let us consider a system consisting only of the neutral scalar field φ(x) with mass m. In this case the Lagrangian
density L is as given by Eq.(4.1) from Ref.[5]

L(φ, ∂µφ) =
1

2
(∂µφ∂µφ−m2φ2), (1)

where we considered c = ~ = 1.
The corresponding classical action S is the integral over space-time:

S =

∫
dtL =

∫
d4xL (φ(x), ∂µφ(x)) , (2)

as seen in Eq. (1.4) from Ref.[1]. And we invoke the Variational Principle, which establishes that the action must be
invariant, that means:

δS = 0. (3)

It leads us to:

δS = δ

∫
L (φ(x), ∂µφ(x)) d4x = 0. (4)

Now we need to calculate the variation of the Lagrangian density. In order to do so, let us first consider a function
of two independent variables f(x1, x2). The variation of this function is:

δf(x1, x2) = f(x1 + ∆x1, x2 + ∆x2)− f(x1, x2). (5)

The Taylor expansion of f(x1 + ∆x1, x2 + ∆x2) can be written as:

δf(x1 + ∆x1, x2 + ∆x2) = f(x1, x2) +
1

1!

∂f(x1, x2)

∂x1
∆x1 +

1

1!

∂f(x1, x2)

∂x2
∆x2+

+
1

2!

∂2f(x1, x2)

∂x2
1

(∆x1)2 +
1

2!

∂2f(x1, x2)

∂x2
2

(∆x2)2 +
2

2!

∂2f(x1, x2)

∂x1∂x2
∆x1∆x2 + ... (6)

Substituting eq. (6) into eq. (5) and neglecting the terms of second order, we have:

δf(x1, x2) =
∂f(x1, x2)

∂x1
∆x1 +

∂f(x1, x2)

∂x2
∆x2 (7)

Looking at our Lagrangian density we can see that it is also a function of two independent variables L = L(φ, ∂µφ).
Therefore we just follow the recipe above and we have:

δL(φ, ∂µφ) =
∂L(φ, ∂µφ)

∂φ
δφ+

∂L(φ, ∂µφ)

∂(∂µφ)
δ(∂µφ). (8)

According to eq. (4):

δS =

∫
d4x

(
∂L(φ, ∂µφ)

∂φ
δφ+

∂L(φ, ∂µφ)

∂(∂µφ)
δ(∂µφ)

)
= 0. (9)

Let us take a look at the second term of this equation. Integrating by parts, we have:

∫
d4x

(
∂L(φ, ∂µφ)

∂(∂µφ)

)
δ(∂µφ) =

∂L
∂(∂µφ)

δφ−
∫
d4x

[(
∂µ

∂L
∂(∂µφ)

)
δφ

]
. (10)



4

We assume that the variations of the field functions δφ vanish at the surface of the four-volume over which the
integral is taken. Therefore we obtain:

δS =

∫
d4x

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφ = 0. (11)

As this equations are valid for arbitrary variations of the scalar field δφ, we finally have the Euler-Lagrange Equation
for the real scalar field:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (12)

Let us do the same for the charged scalar field. In this case, as can be seen on Eq.(4.54) from Ref.[5], we have the
following Lagrangian density:

L(φ, φ∗, ∂µφ, ∂µφ
∗) = (∂µφ∗∂µφ−m2φ∗φ). (13)

The variation of L can be written as:

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) +

∂L
∂φ∗

δφ ∗+
∂L

∂(∂µφ∗)
δ(∂µφ∗). (14)

Then the Variation Principle gives us:

δS =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) +

∂L
∂φ∗

δφ∗ +
∂L

∂(∂µφ∗)
δ(∂µφ∗)

]
= 0. (15)

Integrating by parts again the second and last term, we obtain

δS =

∫ {
δφ

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µ)φ

)]
+ δφ∗

[
∂L
∂φ∗
− ∂µ

(
∂L

∂(∂µφ∗)

)]}
d4x = 0. (16)

As φ and φ∗ are independent fields and these equations are valid for arbitrary variations of δφ and δφ∗, we have
two Euler-Lagrange Equations. For φ:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (17)

which is the same as that obtained earlier. And for φ∗:

∂L
∂φ∗
− ∂µ

(
∂L

∂(∂µφ∗)

)
= 0. (18)

B. Derivation of the Klein-Gordon Equation

Now that we have the Euler-Lagrange Equations we can also derive the Klein-Gordon Equations. For the real scalar
field we just introduce the Lagrangian density into eq. (12)

∂L
∂φ

= −m2φ (19)
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and

∂µ

(
∂L

∂(∂µφ)

)
= ∂µ∂

µφ. (20)

Identifying ∂µ∂µ as the d’Alembert operator � we have

(� +m2)φ(x) = 0 (21)

which is called the Klein-Gordon Equation for the real scalar field [5].
Now we will do the same for the charged scalar field. We need the Lagrangian density given by eq. (13) and the

Euler-Lagrange equations given by eqs.(17) and (18). Let’s start with the eq. (17). We have

∂L
∂φ

= −m2φ∗ (22)

and

∂µ

(
∂L

∂(∂µφ)

)
= ∂µ∂

µφ∗. (23)

Substituting eqs. (22) and (23) into eq. (17), we obtain the Klein-Gordon equation

(� +m2)φ∗(x) = 0. (24)

Equation (18) gives us

∂L
∂φ∗

= −m2φ (25)

and

∂µ

(
∂L

∂(∂µφ∗)

)
= ∂µ∂

µφ. (26)

Then we have the Klein-Gordon equation as

(� +m2)φ(x) = 0. (27)

Note that this equation is equal to eq. (21).

C. Derivation of the Energy-Momentum Tensor

To calculate the energy momentum tensor Tµν of the neutral scalar field we consider again the Lagrangian density as
in eq. (1). But now we derive it in relation to the coordinates xµ. As L does not explicitly depend on the coordinates,
we have to use the chain rule of differentiation:

∂L
∂xµ

=
∂L
∂φ

∂φ

∂xµ
+

∂L
∂(∂νφ)

∂(∂νφ)

∂xµ
. (28)

Remembering the Euler-Lagrange Equation for the scalar field as in eq. (12), we have:

∂L
∂φ

= ∂µ

(
∂L

∂(∂µφ)

)
. (29)
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Substituting this in the equation above, we are left with:

∂µL = ∂ν

(
∂L

∂(∂νφ)

)
∂µφ+

∂L
∂(∂νφ)

∂µ(∂νφ)

= ∂ν

[(
∂L

∂(∂νφ)

)
∂µφ

]
, (30)

where we used ∂µ =
∂

∂xµ
. Continuing the calculation and using ∂µ = gνµ∂ν , we get

∂ν

[(
∂L

∂(∂νφ)

)
∂µφ− gµνL

]
= 0, (31)

where we identify the energy momentum tensor with [3]

T νµ =

(
∂L

∂(∂νφ)

)
∂µφ− gµνL. (32)

Then we have:

∂νT
ν
µ = 0. (33)

Since gρνT νµ = Tρν , we now have:

Tρµ =

(
∂L

∂(∂ρφ)

)
∂µφ− gρνgµνL. (34)

Noting that gρνgµν = gρµ and making the index changes ρ → µ and µ → ν, we finally have the energy momentum
tensor in the form

Tµν =

(
∂L

∂(∂µφ)

)
∂νφ− gµνL, (35)

which is in accordance to Eq. (2.58) from Ref.[5]. If we replace our Lagrangian density in the tensor, we will end up
with:

Tµν = ∂µφ∂νφ− gµν
1

2

[
∂σφ∂σφ−m2φ2

]
. (36)

We can also deduce the energy-momentum tensor for charged scalar field. Remembering that in this case we have
the Lagrangian density as eq. (13). In this case, the derivation in relation do xµ is going to have two more terms, as
follows:

∂L
∂xµ

=
∂L
∂φ

∂φ

∂xµ
+

∂L
∂(∂µφ)

∂(∂µφ)

∂xµ
+

∂L
∂φ∗

∂φ∗

∂xµ
+

∂L
∂(∂µφ∗)

∂(∂µφ
∗)

∂xµ
. (37)

From the Euler-Lagrange Equations for the charged field, as seen in eqs. (17) and (18), we have:

∂L
∂φ

= ∂µ

(
∂L

∂(∂µφ)

)
, (38)

∂L
∂φ∗

= ∂µ

(
∂L

∂(∂µφ∗)

)
. (39)
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Replacing it in the equation above, we obtain

∂µL = ∂ν

(
∂L

∂(∂νφ)

)
∂µφ+

∂L
∂(∂νφ)

∂µ(∂νφ) + ∂ν

(
∂L

∂(∂νφ∗)

)
∂µφ

∗ +
∂L

∂(∂νφ∗)
∂µ(∂νφ

∗)

= ∂ν

[(
∂L

∂(∂νφ)

)
∂µφ+

(
∂L

∂(∂νφ∗)

)
∂µφ

∗
]
. (40)

Making use of the relation ∂µ = gµ
ν∂ν we end up with

∂ν

[(
∂L

∂(∂νφ)

)
∂µφ+

(
∂L

∂(∂νφ∗)

)
∂µφ

∗ − gµν∂νL
]

= 0. (41)

Identifying the energy-momentum tensor as:

T νµ =

(
∂L

∂(∂νφ)

)
∂µφ+

(
∂L

∂(∂νφ∗)

)
∂µφ

∗ − gµνL (42)

and doing the same calculations we did for the scalar field, we end up with the final form of the energy-momentum
tensor for the charged field:

Tµν =

(
∂L

∂(∂µφ)

)
∂νφ+

(
∂L

∂(∂µφ∗)

)
∂νφ

∗ − gµνL, (43)

which is equal to eq.(3.33) from Ref.[1]. We can also substitute the Lagrangian density given by eq.(13) into this
equation in order to calculate the energy-momentum tensor explicitly

Tµν = ∂µφ
∗∂νφ+ ∂µφ∂νφ

∗ − gµν(∂σφ∗∂σφ−m2φ∗φ). (44)

D. Two ways to derive the Hamiltonian density

First we will derive the Hamiltonian density for the real scalar field using the Legendre transform. In order to do
so, let us first calculate the canonically conjugate field. Remembering that the Lagrangian density to be used here is
the one given by eq. (1):

π(x) =
∂L

∂(φ̇(x))
= φ̇(x). (45)

And now we can calculate the Hamiltonian density as follows [5]

H(x) = π(x)φ̇(x)− L(x)

= ∂0φ∂0φ−
1

2
(∂0φ∂0φ− ∂iφ∂iφ−m2φ2), (46)

where we used the fact that ∂µ =

(
∂

∂t
,∇
)

and ∂µ =

(
∂

∂t
,−∇

)
. And we end up with

H(x) =
1

2

(
π2(x) + (∇φ(x))2 +m2φ2(x)

)
. (47)

This equation is equal to Eq.(4.4) from Ref.[5].
We can also calculate the Hamiltonian density for the charged scalar field. In this case we have to use the Lagrangian

density given by eq. (13). The canonically conjugate fields are
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π =
∂L
∂φ̇

= φ̇∗, (48)

π∗ =
∂L
∂φ̇∗

= φ̇. (49)

The Hamiltonian density in this case is

H = πφ̇+ π∗φ̇∗ − L
= ππ∗ + π∗π − (∂µφ∗∂µφ−m2φ∗φ)

= ∂0φ∂0φ
∗ + ∂0φ∗∂0φ− (∂0φ∗∂0φ+ ∂iφ∗∂iφ−m2φ∗φ)

= ππ∗ − (−∇φ∗)(∇φ) +m2φ∗φ (50)

and we finally have

H(x) = π(x)π∗(x) +∇φ∗(x)∇φ(x) +m2φ∗(x)φ(x). (51)

The other way to derive the Hamiltonian density is through the relation H = T00, as can be seen on Eq.(1.58) from
[3]. So, if we take the energy-momentum tensor given by eq. (36), we obtain the Hamiltonian density for the real
scalar field:

T00 = (∂0φ)2 − g00

[
1

2
(∂σφ∂σφ−m2φ2)

]
= (∂0φ)2 − 1

2
(∂0φ∂0φ)− 1

2
(∂iφ∂iφ) +

1

2
(m2φ2)

=
1

2

[
φ̇2 + (∇φ)2 +m2φ2

]
. (52)

Remembering eq. (45), we finally have the Hamiltonian density

H(x) =
1

2

(
π2(x) + (∇φ(x))2 +m2φ2(x)

)
. (53)

We can observe that this equation is equal to eq. (47).

If we take the energy-momentum tensor given by eq. (34), we find the Hamiltonian density for the charged scalar
field

T00 = (∂0φ
∗∂0φ+ (∂0φ∂0φ

∗ − g00

[
∂σφ∗∂σφ−m2φ∗φ

]
= ∂0φ∂0φ

∗ + ∂iφ
∗∂iφ+m2φ∗φ

= φ̇φ̇∗ + (∇φ∗)(∇φ) +m2φ∗φ. (54)

Remembering eqs. (48) and (49), we end up with

H(x) = π(x)π∗(x) +∇φ∗(x)∇φ(x) +m2φ∗(x)φ(x). (55)

We can observe that this equation is equal to eq. (51).
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E. Current Density

In this section we derive the current density. For that, we need the Lagrangian density given by eq. (13), take it’s
variation as in eq. (14), and insert eqs. (38) and (39)

δL = ∂µ

(
∂L
∂(∂φ)

)
δφ+

∂L
∂(∂µφ)

δ(∂µφ) + ∂µ

(
∂L

∂(∂µφ∗)

)
δφ∗ +

∂L
∂(∂µφ∗)

δ(∂µφ
∗)

= ∂µ

[
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ∗)

δφ∗
]

= 0, (56)

where we used

δ(∂µφ) = ∂µ(φ+ δφ)− ∂µφ = ∂µ(δφ). (57)

Now, if we consider a small transformation of the field φ→ eieαφ, we have the variation of this field being δφ = ieαφ.
So, substituting it in the equation above

δL = −ieα∂µ
[

∂L
∂(∂µφ∗)

φ∗ − ∂L
∂(∂µφ)

φ

]
= 0. (58)

Since [5]

∂µj
µ = 0, (59)

we can define the current density as

jµ = ie

[
∂L

∂(∂µφ∗)
φ∗ − ∂L

∂(∂µφ)
φ

]
. (60)

This equation is in accordance with Eq.(2.28) from Ref.[1] if e = 1. Making the derivations of L, we finally have the
explicit form

jµ = ie(φ∂µφ∗ − φ∗∂µφ). (61)

We can observe that, if φ∗ = φ, that is, if we have only a real scalar field, meaning that we have no charged field,
the current density is going to be equal to zero.

F. Solutions of Klein-Gordon Equation

Considering the Klein-Gordon Equation given by eq. (21), let us see if the two equations below are solutions of this
equation

φ1(x) =
e−ipx√
2EV

(62)

and

φ2(x) =
eipx√
2EV

, (63)

where px = pµxµ = Et− pr, with pr = pxx+ pyy + pzz. Starting with φ1
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(∂µ∂
µ +m2)φ1 =

(( ∂
∂t

)2

−∇2 +m2

)
e−i(Et−pr)

√
2EV

= [(−iE)2 + (ip)2 +m2]
e−i(Et−pr)

√
2EV

= [−E2 + p2 +m2]
e−i(Et−pr)

√
2EV

= 0. (64)

So we conclude that −E2 + p2 +m2 = 0 and we have the relativistic dispersion relation [5]

E =
√
p2 +m2. (65)

Here we are considering only the positive solution because it is the one that corresponds to the free particles.

For φ2 the calculations are similar

(∂µ∂
µ +m2)φ2 =

(( ∂
∂t

)2

−∇2 +m2

)
ei(Et−pr)

√
2EV

= [(iE)2 + (−ip)2 +m2]
ei(Et−pr)

√
2EV

= [−E2 + p2 +m2]
e−i(Et−pr)

√
2EV

= 0. (66)

Resulting the same relativistic dispersion relation as given by eq. (65).

So, if the two equations are solutions of the Klein-Gordon Equation, a linear combinations of the two is also going
to be a solution:

φ(x) =
∑
p

1√
2EV

(ape
−ipx + bpe

ipx), (67)

where ap and bp are constants.
As we are considering of a real scalar field, we have to impose φ∗ = φ, which also gives us bp = a∗p and eq.(67) can

be written as

φ(x) =
∑
p

1√
2EV

(ape
−ipx + a∗pe

ipx). (68)

We can also write eq. (68) in terms of the wave vector k. In order to do so, let’s remember the relation [5]

pα =
2π

L
kα, (69)

where we used the natural units so that ~ = c = 1. Also kα ∈ Z and α = 1, 2, 3 = x, y, z and L is the size of one side
of a cubic box in which the particle is confined so that L = V 1/3, where V is the volume of this box.

Substituting this in eq. (68), we have

φ(x) =

∞∑
k=−∞

1√
2EV

[ake
−i(Et− 2π

L kr) + a∗ke
i(Et− 2π

L kr)] (70)

and the relativistic dispersion relation is now given by:

E =

√(
2π

L

)2

(k2
x + k2

y + k2
z) +m2 =

√(
2πk

L

)2

+m2. (71)
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G. Calculation of the Momentum

We have that the momentum P, as can be seen by Eq.(4.47) from Ref.[5], is given by

P = −
∫
d3xT0i, (72)

where d3x = dxdydz and the minus sign came from the fact that, for any covariant four-vector we have Pµ =
(P0,−Pi) = (P0,−P ). Remembering the energy-momentum tensor given by eq. (36), we can calculate T0i as

T0i = ∂0φ∂iφ− g0i

[
1

2
(∂σφ∂σφ−m2φ2)

]
=
∂φ

∂t
∇φ. (73)

Using the function φ given by eq. (68) and taking the temporal and spatial derivations, we have

T0i =
∑
p′

∑
p

−E′p√
4E′EV 2

(
− ap′ape

−i[t(E′+E)−r(p′+p)] − a∗p′a∗pe
i[t(E′+E)−r(p′+p)]

+ ap′a∗pe
−i[t(E′−E)−r(p′−p)] + a∗p′ape

i[t(E′−E)−r(p′−p)]
)
. (74)

Let us take the first term above and do its integration

∫
d3x

(
ap′ape

−i[t(E′+E)−r(p′+p)]
)

= ap′ape
−it(E′+E)

∫
d3xeir(p′+p)

= ap′ape
−it(E′+E)

∫ L

0

dxe
2πi
L x(k′x+kx)

∫ L

0

dye
2πi
L y(k′y+ky)

∫ L

0

dze
2πi
L z(k′z+kz)

= ap′ape
−it(E′+E)

(
L

2πi

)3
[

(e2πi(k′x+kx) − 1)

k′x + kx

(e2πi(k′y+ky) − 1)

k′y + ky

(e2πi(k′z+kz) − 1)

k′z + kz

]
.

(75)

Now we have two possible solutions: the case when k′ + k = 0 and the case when k′ + k 6= 0. Let us take a look at
the two cases. Analyzing only the part with dependence on x, taking the limit k′x + kx → 0, we can make a Taylor
expansion of the exponential

(e2πi(k′x+kx) − 1)

k′x + kx
=

1 + 2πi(k′x + kx) + 1
2 (2πi)2(k′x + kx)2 + ...− 1

(k′x + kx)
= 2πi. (76)

In the case when k′ + k 6= 0 we can use the Euler’s formula

(e2πi(k′x+kx) − 1)

k′x + kx
=

cos 2π(k′x + kx) + i sin 2π(k′x + kx)− 1

k′x + kx
= 0, (77)

where we used the fact that, as kx and k′x are integer numbers, k′x + kx are too. And so, if we combine the two
answers, we have a kronecker delta and in eq. (74) we have

∫
d3x

(
ap′ape

−i[t(E′+E)−r(p′+p)]
)

= ap′ape
−it(E′+E)L3δp′+p,0. (78)

Now, if we do the same integration for the other terms of eq. (74), we have similar answers and we can generalize
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∫
d3xe±ir(p′+p)] = L3δp′+p,0, (79)

∫
d3xe±ir(p′−p)] = L3δp′−p,0. (80)

And now, putting everything together, we have

P = −
∫
d3xT0i

=
∑
p′

∑
p

E′p√
4E′EV 2

(
− ap′ape

−it(E′+E)L3δp′+p,0 − a∗p′a∗pe
it(E′+E)L3δp′+p,0

+ ap′a∗pe
−it(E′−E)L3δp′−p,0 + a∗p′ape

it(E′−E))L3δp′−p,0

)
=
∑
p

p

2

(
apa−pe

−2iEt + a∗pa
∗
−pe

2iEt + apa
∗
p + a∗pap

)
. (81)

Analyzing separately the first term of this summation:

∑
p

p

2
(apa−p)e−2iEt =

∑
p<0

p

2
(apa−p)e−2iEt +

∑
p>0

p

2
(apa−p)e−2iEt

=
∑
p>0

−p
2

(a−pap)e−2iEt +
∑
p>0

p

2
(apa−pe

−2iEt)

=
∑
p>0

p

2
(apa−p − a−pap)e−2iEt = 0. (82)

For the second term the calculations are similar. And so we finally have the final form of the momentum

P =
∑
p

p

2
(apa

∗
p + a∗pap). (83)

This result is in accordance with Eq.(4.51) from [5].

H. Calculation of the Energy

We have that the energy is given by

E = P0 =

∫
d3xT00. (84)

We have already calculated T00 on eq. (52). So we have

E =

∫
d3x

1

2

[
φ̇2 + (∇φ)2 +m2φ2

]
. (85)

Using φ as given by eq. (68), we first calculate each term separately

∫
d3xφ̇2 =

∫
d3x

∑
p′

∑
p

−E′E√
4E′EV 2

[
ap′ape

−i[t(E′+E)−r(p′+p)] + a∗p′a∗pe
i[t(E′+E)−r(p′+p)]

− ap′a∗pe
−i[t(E′−E)−r(p′−p)] − a∗p′ape

i[t(E′−E)−r(p′−p)]
]

=
∑
p

−E
2

(
a−pape

−2iEt + a∗−pa
∗
pe

2iEt − apa∗p − a∗pap
)
, (86)
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∫
d3x(∇φ)2 =

∫
d3x

∑
p′

∑
p

−p′p√
4E′EV 2

[
ap′ape

−i[t(E′+E)−r(p′+p)] + a∗p′a∗pe
i[t(E′+E)−r(p′+p)]

− ap′a∗pe
−i[t(E′−E)−r(p′−p)] − a∗p′ape

i[t(E′−E)−r(p′−p)]
]

=
∑
p

p2

2E

(
a−pape

−2iEt + a∗−pa
∗
pe

2iEt + apa
∗
p + a∗pap

)
, (87)

∫
d3xm2φ2 =

∫
d3x

∑
p′

∑
p

m2

√
4E′EV 2

[
ap′ape

−i[t(E′+E)−r(p′+p)] + a∗p′a∗pe
i[t(E′+E)−r(p′+p)]

+ ap′a∗pe
−i[t(E′−E)−r(p′−p)] + a∗p′ape

i[t(E′−E)−r(p′−p)]
]

=
∑
p

m2

2E

(
a−pape

−2iEt + a∗−pa
∗
pe

2iEt + apa
∗
p + a∗pap

)
. (88)

Substituting this into eq. (85), we get

E =
1

2

∑
p

[
a−pape

−2iEt

(
−E
2

+
p2

2E
+
m2

2E

)
+ a∗−pa

∗
pe

2iEt

(
−E
2

+
p2

2E
+
m2

2E

)

+ apa
∗
p

(
E

2
+

p2

2E
+
m2

2E

)
+ a∗pap

(
E

2
+

p2

2E
+
m2

2E

)]
. (89)

Taking a look at the terms in the brackets

(
−E
2

+
p2

2E
+
m2

2E

)
=
−E2 + p2 +m2

2E
= 0 (90)

and (
E

2
+

p2

2E
+
m2

2E

)
=
E2 + p2 +m2

2E
= E, (91)

where we used the relativistic dispersion relation as in eq. (65). And so we finally have the final form of the energy

E =
∑
p

E

2
(apa

∗
p + a∗pap). (92)

I. Calculation of the Noether charge

In order to calculate the Noether charge we need the current density given by eq.(61) and the relation [5]

Q =

∫
d3xj0(x). (93)

The zero component of the current density is

j0 = ie(φ∂0φ∗ − φ∗∂0φ). (94)

Using eq. (67) and doing the derivations, we have
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∫
d3xφ∂0φ

∗ =

∫
d3x

∑
p

∑
p′

iE′√
4E′EV 2

[
apa
∗
p′e−i[t(E−E

′)−r(p−p′)] − bpb∗p′ei[t(E−E
′)−r(p−p′)]

− apb∗p′e−i[t(E+E′)−r(p−p′)] + bpa
∗
p′ei[t(E+E′)−r(p+p′)]

]
=
∑
p

i

2

(
apa
∗
p − bpb∗p − apb∗−pe−2iEt + bpa

∗
−pe

2iEt
)
, (95)

∫
d3xφ∗∂0φ =

∫
d3x

∑
p

∑
p′

−iE′√
4E′EV 2

[
a∗pap′ei[t(E−E

′)−r(p−p′)] − b∗pbp′e−i[t(E−E
′)−r(p−p′)]

− a∗pbp′ei[t(E+E′)−r(p−p′)] + b∗pap′e−i[t(E+E′)−r(p+p′)]
]

=
∑
p

−i
2

(
a∗pap − b∗pbp − a∗pb−pe2iEt + b∗pa−pe

−2iEt
)
. (96)

Substituting this into eq. (93), we obtain

Q = ie
[∑

p

i

2

(
apa
∗
p − bpb∗p − apb∗−pe−2iEt + bpa

∗
−pe

2iEt
)

−
∑
p

−i
2

(
a∗pap − b∗pbp − a∗pb−pe2iEt + b∗pa−pe

−2iEt
)]
. (97)

Looking at the therms multiplied by e2iEt, we have

∑
p

bpa
∗
−pe

2iEt −
∑
p

a∗pb−pe
2iEt =

∑
p<0

(bpa
∗
−p − a∗pb−p)e2iEt

+
∑
p>0

(bpa
∗
−p − a∗pb−p)e2iEt + b0a

∗
0e

2iEt − a∗0b0e2iEt

=
∑
p>0

[
(b−pa

∗
p − a∗−pbp)e2iEt + (bpa

∗
−p − a∗pb−p)e2iEt

]
= 0. (98)

The same happens with the terms multiplied by e−2iEt. And so we finally have the final form of the Noether charge
as

Q = −e
∑
p

(apa
∗
p − bpb∗p). (99)

J. Calculation of the Noether current

In order to calculate the Noether current we need the spatial part of the eq. (61)

ji = ie(φ∂iφ∗ − φ∗∂iφ) = ie[φ∗(∇φ)− φ(∇φ∗)]. (100)

And we have

J = ie

∫
d3x[φ∗(∇φ)− φ(∇φ∗)]. (101)

Doing the derivations and the integration of the two terms separately, we obtain
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∫
d3xφ∗(∇φ) =

∫
d3x

∑
p

∑
p′

ip′√
4E′EV 2

[
a∗pap′ei[t(E−E

′)−r(p−p′)] − b∗pbp′e−i[t(E−E
′)−r(p−p′)]

− a∗pbp′ei[t(E+E′)−r(p−p′)] + b∗pa
∗
p′e−i[t(E+E′)−r(p+p′)]

]
=
∑
p

ip

2E

(
a∗pap − b∗pbp + a∗pb−pe

2iEt − b∗pa−pe−2iEt
)
, (102)

∫
d3xφ(∇φ∗) =

∫
d3x

∑
p

∑
p′

−ip′√
4E′EV 2

[
apa
∗
p′e−i[t(E−E

′)−r(p−p′)] − bpb∗p′ei[t(E−E
′)−r(p−p′)]

− apb∗p′e−i[t(E+E′)−r(p−p′)] + bpa
∗
p′ei[t(E+E′)−r(p+p′)]

]
=
∑
p

−ip
2E

(
apa
∗
p − bpb∗p + apb

∗
−pe

−2iEt − bpa∗−pe2iEt
)
. (103)

Noticing that the terms multiplying e2iEt and e−2iEt cancel each other as in the previous section, we finally have

J = −e
∑
p

p

E
(a∗pap − b∗pbp). (104)

III. FIELD QUANTIZATION

We must observe that in high energy physics the number of particles of a given type is not a constant. So the
interpretation of the Klein-Gordon equation as a single-particle equation has to be reformulated. If we take the field
φ(x) as being a quantum field we will have a interpretation of a many-particle theory, which is what we want.
If we recognize φ(x) as a quantum field we should treated it as a operator, which is subject to various commutation
relations analogous to those in ordinary quantum mechanics. So, let us start with the study of the ordinary quantum
mechanic through the study of the Harmonic Oscillator.

A. One Harmonic Oscillator

The Hamiltonian operator of a one-dimensional harmonic oscillator is given by [12]

Ĥ =
p̂2

2m
+
mω2x̂2

2
. (105)

Remembering that p̂ = −i~ d

dx
. Now we suppose that

â ≡ Ax̂+Bp̂,

â† ≡ Ax̂−Bp̂. (106)

And we have

x̂ =
â+ â†

2A
,

p̂ =
â− â†

2B
. (107)
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Substituting this into eq. (105), we have

Ĥ = (â†)2

(
mω2

8A2
+

1

8mB2

)
+ (â)2

(
mω2

8A2
+

1

8mB2

)
+ (â†â+ ââ†)

(
mω2

8A2
− 1

8mB2

)
. (108)

We want that the Hamiltonian of the harmonic oscillator has the following form

Ĥ =
~ω
2

(â†â+ ââ†). (109)

Comparing eq. (108) with eq. (109) we can see that the terms multiplying (â†)2 and (â)2 have to be zero and the

term multiplying (â†â+ ââ†) have to be equal to
~ω
2
. With that we have that

A =

√
mω

2~
,

B =
i√

2m~ω
. (110)

Replacing it into eq. (106), we have

â =

√
mω

2~

(
x̂+

ip̂

mω

)
,

â† =

√
mω

2~

(
x̂− ip̂

mω

)
(111)

and into eq. (107)

x̂ =

√
~

2mω
(â† + â),

p̂ = i

√
m~ω

2
(â† − â). (112)

Eqs. (111) and (112) are in accordance with Eqs. (2.3.2) and (2.3.24) from Ref.[7].
Now we define a new variable ξ in order to facilitate our calculations further on

ξ ≡ x

x0
, (113)

where x0 =

√
~
mω

. With that we also have

d

dξ
= x0

d

dx
→ d2

dξ2
= x2

0

d2

dx2
. (114)

Making this substitution into eq. (105), we now have the following Hamiltonian

Ĥ =
~ω
2

(
ξ2 − d2

dξ2

)
. (115)

Making also this substitution into eq. (111), we have

â =
1√
2

(
ξ +

d

dξ

)
,

â† =
1√
2

(
ξ − d

dξ

)
. (116)
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With this definition of â and â† we are also able to find

ξ =
1√
2

(â† + â),

d

dξ
=

1√
2

(â† − â). (117)

Using the definition of â and â† as given in eq. (116) we are now ready to calculate the commutation relations of
this two operators

[â, â†] =

[
1√
2

(
ξ +

d

dξ

)
,

1√
2

(
ξ − d

dξ

)]
=

1

2

(
[ξ, ξ]−

[
d

dξ
,
d

dξ

]
+

[
d

dξ
, ξ

]
−
[
ξ,
d

dξ

])
. (118)

It is not hard to see that the first two commutators are equal to zero. To calculate the last two commutators it is
easier to apply them to a dummy function ψ:

[
d

dξ
, ξ

]
ψ −

[
ξ,
d

dξ

]
ψ =

d

dξ
(ξψ)− ξ d

dξ
ψ −

(
ξ
d

dξ
ψ − d

dξ
(ξψ)

)
= 2

(
d

dξ
(ξψ)− ξ d

dξ
ψ

)
= 2

(
ψ + ξ

dψ

dξ
− ξ d

dξ
ψ

)
= 2ψ. (119)

Substituting this result, without the dummy function ψ, into eq. (118), we now have the final result [8]

[â, â†] = −[â†, â] = 1. (120)

Doing similar calculations, we also have

[â, â] = [â†, â†] = 0. (121)

We can also calculate the commutator between the Hamiltonian given by eq. (115) and a†:

[Ĥ, â†] =
~ω

2
√

2

[
ξ2 − d2

dξ2
, ξ − d

dξ

]
=

~ω
2
√

2

(
[ξ2, ξ] +

[
d2

dξ2
,
d

dξ

]
−
[
d2

dξ2
, ξ

]
−
[
ξ2,

d

dξ

])
. (122)

Again, the first two commutators are equal to zero. Let’s calculate the other two

−
[
d2

dξ2
, ξ

]
ψ −

[
ξ2,

d

dξ

]
ψ = − d2

dξ2
(ξψ) + ξ

d2

dξ2
ψ − ξ2 d

dξ
ψ +

d

dξ
(ξ2ψ)

= − d

dξ

(
ψ + ξ

d

dξ
ψ

)
+ ξ

d2

dξ2
ψ − ξ2 d

dξ
ψ + 2ξψ + ξ2 d

dξ
ψ

= 2ξψ − 2
d

dξ
ψ

= 2
√

2â†ψ. (123)
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And so we finally have [8]

[Ĥ, â†] = ~ωâ†. (124)

If we do similar calculations using â instead of â† we find the following

[Ĥ, â] = −~ωâ. (125)

The â and â† operators are called annihilation (or lowering) and creation (or raising) operators, respectively. Let’s
see why. Assuming that ψn is an eigenstate of the Hamiltonian Ĥψn = Enψn and using the above commutation
relations, it follows that

Ĥâψn = (âĤ − ~ωâ)ψn = (En − ~ω)âψn, (126)

Ĥâ†ψn = (â†Ĥ + ~ωâ†)ψn = (En + ~ω)â†ψn. (127)

This shows that âψn and â†ψn are also eigenstates of the Hamiltonian, with eigenvalues En − ~ω and En + ~ω
respectively. This identifies the operators â and â† as "lowering" and "raising" operators between adjacent eigenstates.

The ground state can be found by assuming that âψ0 = 0, with ψ0 6= 0. Using â given by eq. (116) we have

1√
2

(
ξ +

d

dξ

)
ψ0 = 0→ ξψ0 +

dψ0

dξ
= 0 (128)

which gives us

ψ0(ξ) = Ae−
ξ2

2 → ψ0(x) = Ae
− x2

2x20 , (129)

where A is a normalizing constant that can be found by doing

∫ ∞
−∞

dx|ψ0|2 = |A|2
∫ ∞
−∞

dxe
− x2
x20 = |A|2

√
πx2

0 = 1 → A =
1

(πx2
0)1/4

(130)

and we finally have

ψ0(x) =
1

(πx2
0)1/4

e
− x2

2x20 =
(mω
π~

)1/4

e−
mω
2~ x

2

. (131)

This result for the ground state wave function is in accordance with Eq.(2.3.30) from Ref.[7].

Now that we know that â† is a creation operator, it’s intuitive to think that (â†)nψ0 = Cnψn, where Cn is a
proportionality factor. Let us find this factor!

First, let us introduce the Bra-Ket notation here. In this notation we have ψn = |n〉 and ψ∗n = 〈n|. And let us
redefine Cn as Cn → (Cn)−1 so that we have

|n〉 = Cn(â†)n |0〉 and 〈n| = 〈0| (â)nC∗n. (132)

In order to find Cn we will use the normalization rule 〈n|n〉 = 1, the commutation relation given by eq. (120) so that
ââ† = 1 + â†â and the fact that â |0〉 = 0
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〈n|n〉 = 〈0| (â)nC∗nCn(â†)n |0〉 = 1

= |Cn|2 〈0| (â)n(â†)n |0〉 = |Cn|2 〈0| (â)n−1ââ†(â†)n−1 |0〉
= |Cn|2 〈0| (â)n−1(1 + â†â)(â†)n−1 |0〉
= |Cn|2

[
〈0| (â)n−1(â†)n−1 |0〉+ 〈0| (â)n−1â†â(â†)n−1 |0〉

]
. (133)

At this step, if n = 1, we have

〈1|1〉 = |C1|2
[
〈0|0〉+ 〈0| â†â |0〉

]
= |C1|2. (134)

Continuing the calculations of eq. (133)

〈n|n〉 = |Cn|2
[
〈0| (â)n−2ââ†(â†)n−2 |0〉+ 〈0| (â)n−2ââ†ââ†(â†)n−2 |0〉

]
= |Cn|2

[
〈0| (â)n−2(1 + â†â)(â†)n−2 |0〉+ 〈0| (â)n−2(1 + â†â)(1 + ââ†)(â†)n−2 |0〉

]
= |Cn|2

[
2 〈0| (â)n−2(â†)n−2 |0〉+ 4 〈0| (â)n−2â†â(â†)n−2 |0〉+ 〈0| (â)n−2(â†)2(â)2(â†)n−2 |0〉

]
. (135)

At this step, if we make n = 2, we have

〈2|2〉 = |C2|2
[
2 〈0|0〉+ 4 〈0| â†â |0〉+ 〈0| â†â†ââ |0〉

]
= 2|C2|2. (136)

Continuing the calculations of eq. (135)

〈n|n〉 = |Cn|2
[
2 〈0| (â)n−3ââ†(â†)n−3 |0〉+ 4 〈0| (â)n−3ââ†ââ†(â†)n−3 |0〉+ 〈0| (â)n−3â(â†)2(â)2â†(â†)n−3 |0〉

]
= |Cn|2

[
2 〈0| (â)n−3(1 + â†â)(â†)n−3 |0〉+ 4 〈0| (â)n−3(1 + â†â)(1 + â†â)(â†)n−3 |0〉

+ 〈0| (â)n−3(1 + â†â)(â†)(â)(1 + â†â)(â†)n−3 |0〉
]

= |Cn|2
[
6 〈0| (â)n−3(â†)n−3 |0〉+ 18 〈0| (â)n−3â†â(â†)n−3 |0〉

+ 9 〈0| (â)n−3(â†)2(â)2(â†)n−3 |0〉+ 〈0| (â)n−3(â†)3(â)3(â†)n−3 |0〉
]
. (137)

At this step, if we make n = 3, we have

〈3|3〉 = |C3|2
[
6 〈0|0〉+ 18 〈0| â†â |0〉+ 9 〈0| â†â†ââ |0〉+ 〈0| â†â†â†âââ |0〉

]
= 6|C3|2 (138)

and now, taking eqs: (134), (136) and (138), we can observe a pattern

〈n|n〉 = n!|Cn|2 (139)

which finally gives us the factor Cn = 1/
√
n! that we were looking for and we have a very useful equation

|n〉 =
(â†)n√
n!
|0〉 ↔ ψn =

(â†)n√
n!
ψ0, (140)

which is equal to Eq.(2.3.21) from [7]. Using this equation and also â† given by eq. (116), we can find the general
wave function of the harmonic oscillator as follows

â†ψ0 =
1√
2

(
ξ − d

dξ

)
ψ0 =

2√
2
ξψ0 =

H1(ξ)√
2
ψ0 = ψ1
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(â†)2ψ0 =

(
1√
2

(
ξ − d

dξ

))2

ψ0 =
(4ξ2 − 2)√

4
ψ0 =

H2(ξ)√
22

ψ0 =
√

2ψ2

(â†)3ψ0 =

(
1√
2

(
ξ − d

dξ

))3

ψ0 =
(8ξ3 − 18ξ)√

8
ψ0 =

H3(ξ)√
23

ψ0 =
√

3!ψ3

(â†)4ψ0 =

(
1√
2

(
ξ − d

dξ

))4

ψ0 =
(16ξ4 − 48ξ2 + 12)√

16
ψ0 =

H4(ξ)√
24

ψ0 =
√

4!ψ4

.

.

.

(â†)nψ0 =

(
1√
2

(
ξ − d

dξ

))n
ψ0 =

Hn(ξ)√
2n

ψ0 =
√
n!ψn, (141)

where Hn(ξ) are the Hermite polynomials [11]:

Hn(ξ) = (−1)neξ
2 dn

dξn
e−ξ

2

. (142)

And so we have the general solution for the Schrödinger Equation Ĥψn = Enψn from eqs. (131) and (141)

ψn(ξ) =
1

(πx2
0)1/4

1√
2nn!

e−
ξ2

2 Hn(ξ)

ψn(x) =
(mω
π~

)1/4 1√
2nn!

e−
mω
2~ x

2

Hn

(
x

√
mω

~

)
. (143)

Let us take a look again at eq. (140). If we change n for n+ 1, we obtain

|n+ 1〉 =
(â†)n+1√
(n+ 1)!

|0〉 =
â†(â†)n√
(n+ 1)!

|0〉 =
â†
√
n!√

(n+ 1)!
|n〉 =

â†√
n+ 1

|n〉 (144)

and so we have a well known recurrence relation that can be found in any references about Quantum Mechanics, as,
for example, in Ref. [7]:

â† |n〉 =
√
n+ 1 |n+ 1〉 . (145)

Let us find a similar relation for the annihilation operator â. Also from eq. (140), we have

â |n〉 =
â(â†)n√

n!
|0〉 =

ââ†(â†)n−1

√
n!

|0〉 =
(1 + â†â)(â†)n−1

√
n!

|0〉

=
(â†)n−1

√
n!
|0〉+

â†â(â†)n−1

√
n!

|0〉 =

√
(n− 1)!√
n!

|n− 1〉+
â†ââ†(â†)n−2

√
n!

|0〉

=
1√
n
|n− 1〉+

â†(1 + â†â)(â†)n−2

√
n!

|0〉 =
2√
n
|n− 1〉+

â†â†â(â†)n−2

√
n!

|0〉

=
2√
n
|n− 1〉+

â†â†ââ†(â†)n−3

√
n!

|0〉 =
3√
n
|n− 1〉+

(â†)3â(â†)n−3

√
n!

|0〉
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.

.

.

=
n√
n
|n− 1〉 =

√
n |n− 1〉 . (146)

And so we finally have another well known recurrence relation

â |n〉 =
√
n |n− 1〉 . (147)

Observing eqs. (145) and (147) we can see again why the â† and â are called creation and annihilation operators,
respectively: in essence, â† adds a single quantum of energy to the oscillator, while â removes a quantum. The two
operators together are also called ladder operators.

We can also define a operator N̂ called Number Operator

N̂ = â†â. (148)

Let’s apply this operator to a eigenstate |n〉

N̂ |n〉 = â†â |n〉 = â†
√
n |n− 1〉 =

√
nâ† |n− 1〉

=
√
n
√
n− 1 + 1 |n− 1 + 1〉 = n |n〉 . (149)

In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator
is the observable that counts the number of particles.

With that and the commutation relation given by eq. (120) we can redefine the Hamiltonian given by eq. (109) as

Ĥ = ~ω
(
N̂ +

1

2

)
. (150)

Using the time-independent Schrödinger equation Ĥ |n〉 = En |n〉 we can also find the energy spectrum of the harmonic
oscillator

Ĥ |n〉 = ~ω
(
N̂ +

1

2

)
|n〉 = ~ω

(
n+

1

2

)
|n〉 (151)

which gives us

En = ~ω
(
n+

1

2

)
. (152)

We can see that the energy is quantized, meaning that only discrete energy values are possible. Also, these discrete
energy levels are equally spaced. Another thing that we can see is the fact that the lowest achievable energy is not
equal to zero, but ~ω/2.

We can also calculate the commutator of N̂ with the creation and annihilation operators

[N̂ , â†] = [â†â, â†] = â†[â, â†] + [â†, â†]â = â†, (153)

[N̂ , â] = [â†â, â] = â†[â, â] + [â†, â]â = −â, (154)

where we used the commutation relations given by eqs. (120) and (121).
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B. Many Harmonic Oscillators

We can generalize the results obtained above for one harmonic oscillator to a system of harmonic oscillators. For
that, we take the momentum space as a three-dimensional lattice. So, every vertex contains one oscillator, but the
spaces between the vertices are forbidden. The main results obtained at the section above are, as follows.

From eq. (120) and (121) we have

[âp, â
†
p′ ] = δp,p′ , (155)

[âp, âp′ ] = [â†p, â
†
p′ ] = 0. (156)

We have N vertices and consequently N oscillators, with N →∞. So, from eq. (155) we can see that, indeed, the
spaces between the vertices of the infinity three-dimensional momentum lattice are forbidden.

The action of the operator âp to the ground state here should also be zero

â |0〉 = 0 ⇐⇒ âp |00...0〉 = 0. (157)

From eq. (140)

|n〉 =
(â†)n√
n!
|0〉 ⇐⇒

∣∣np1
np2

...npN
〉

=

N∏
i=1

(â†pi)
npi√

npi !
|00...0〉 . (158)

From eqs. (145) and (147)

â†p
∣∣np1

. . . np . . . npN
〉

=
√
np + 1

∣∣np1
. . . np + 1 . . . npN

〉
(159)

and

âp
∣∣np1

. . . np . . . npN
〉

=
√
np
∣∣np1

. . . np − 1 . . . npN
〉
. (160)

From eq. (148) we now have

N̂p = â†pâp (161)

so that

N̂p

∣∣np1
. . . np . . . npN

〉
= np

∣∣np1
. . . np . . . npN

〉
. (162)

Here we have that np represents the number of particles at the position p in the lattice of the momentum space. So,
the number operator N̂p counts this particles. And â† creates and â destroys particles.

C. Canonical Quantization of the Klein-Gordon Field

Now that we exceeded the study of the harmonic oscillator, we can finally use this knowledge for the quantization of
the Klein-Gordon Field. We follow the prescription of field quantization: the field φ(x), given by eq. (67) is replaced
by the operator φ̂(x) as well as the amplitudes a and a∗, that are replaced by the annihilation and creation operators,
so that we have

φ̂(x) =
∑
p

1√
2EV

(
âpe
−ipx + â†pe

ipx
)
. (163)
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And all the other results obtained at section (II) may now be rewritten in terms of operators.
From the equation of the momentum, given by eq. (84), we have

P̂ =
∑
p

p

2

(
âpâ
†
p + â†pâp

)
=
∑
p

p
(
N̂p +

1

2

)
, (164)

where we used eqs. (155) and (161).
From eq.(92) we also have the Hamiltonian operator

Ĥ =
∑
p

E

2

(
âpâ
†
p + â†pâp

)
=
∑
p

E
(
N̂p +

1

2

)
, (165)

which is very similar to the Hamiltonian of the harmonic oscillator as seen in eq. (150) if we take into account that
for the H.O. E = ~ω. For the Klein-Gordon Field, as we already deduced, E =

√
p2 +m2.

Taking the Klein-Gordon Field given by eq. (68) and using the following identity to replace the discrete sum by a
continuous integral

∑
p

⇐⇒ V

(2π)3

∫
d3p (166)

we have

φ̂(x, t) =
V

(2π)3

∫
d3p√
2EV

(
âpe
−i(Et−px) + â†pe

i(Et−px)
)
. (167)

Remembering that φ̇(x) = π(x)

π̂(x, t) =
V

(2π)3

∫
d3p√
2EV

(−iE)
(
âpe
−i(Et−px) − â†pei(Et−px)

)
. (168)

And we can calculate the commutation relations between φ̂(x, t) and π̂(x, t)

[φ̂(x, t), π̂(x′, t)] =
V

2(2π)6

∫
d3p

∫
d3p′

(−iE′)√
4EE′

[
[âp, âp′ ]e−i(px+p′x′) − [â†p, â

†
p′ ]e

i(px+p′x′)

− [âp, â
†
p′ ]e
−i(px−p′x′) + [â†p, âp′ ]ei(px−p

′x′)

]
. (169)

Using the commutation relations given by eqs.(155) and (156) we can see that the first two commutator are zero,
resulting in

[φ̂(x, t), π̂(x′, t)] =
V

2(2π)6

∫
d3p

∫
d3p′

(iE′)√
4EE′

δp,p′

[
e−i(px−p

′x′) + ei(px−p
′x′)
]

=
iV

2(2π)6

∫
d3p

[
eip(x−x′) + e−ip(x−x′)

]
=

iV

(2π)3
δ3(x− x′), (170)

where we used the definition of Dirac delta function [9]
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δ3(x− x′) =

∫
d3p

(2π)3
e±ip(x−x′). (171)

Doing similar calculations, we find

[φ̂(x, t), φ̂(x′, t)] = [π̂(x, t), π̂(x′, t)] = 0. (172)

The commutation relations given by eqs. (170) and (172) are called equal-time commutation relations (ETCR) [5].

D. The Annihilation and Creation Operators in terms of the Klein-Gordon Field

In this section we want to find the annihilation an creation operators, â and â† as a function of the Klein-Gordon
field φ(x). For that we will need the Fourier Transformations [10]:

F (ω) =

∫
f(t)e−iωtdt, (173)

f(t) =

∫
1

2π
F (ω)eiωtdω. (174)

Now, if we separate eq. (167) into two equations, we have

φ̂(x, t) =
V

(2π)3

∫
d3p√
2EV

(
âpe
−i(Et−px)

)
. (175)

And, following the "recipe" given by eqs. (173) and (174), we do the Fourier transformation

âp =
1

(2π)3

∫
d3x

(2π)3

V
(
√

2EV )ei(Et−px)φ̂(x, t) =

∫
d3x

2E√
2EV

ei(Et−px)φ̂(x, t). (176)

For the second part of eq. (167) we have

φ̂(x, t) =
V

(2π)3

∫
d3p√
2EV

(
â†pe

i(Et−px)
)
. (177)

Its Fourier transformation is

â†p =
1

(2π)3

∫
d3x

(2π)3

V
(
√

2EV )e−i(Et−px)φ̂(x, t) =

∫
d3x

2E√
2EV

e−i(Et−px)φ̂(x, t). (178)

If we define a new function up and its complex conjugate u∗p as

up =
1√

2EV
ei(Et−px) and u∗p =

1√
2EV

e−i(Et−px) (179)

we can rewrite eqs. (176) and (178) as

âp = 2E

∫
d3xu∗pφ̂(x, t), (180)

â†p = 2E

∫
d3xupφ̂(x, t). (181)

This last two equations are equivalent to Eq.(4.28) from Ref.[5].
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IV. PARTITION FUNCTION

In this section we want to find the Partition Function of the real scalar field. The thermodynamics of the real scalar
field of volume V, in contact with the heat and particle reservoir of temperature T and chemical potential µ we have
the following partition function [6]:

Z = Tr(e−β(Ĥ−µQ̂)) (182)

Where β = 1/kBT , with kB being the Boltzmann constant and T the temperature. But, in our case, the charge Q̂
is zero. So we are left with

Z = Tr(e−βĤ) (183)

But how do we find the trace of a exponential of a matrix? Let us find out.

A. The trace of a exponential of a matrix

Let us calculate Tr(e−αÂ) where Â is a matrix given by

Â =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
We can make the expansion of our exponential, so that we have

Tr(e−αÂ) = Tr
(
I − αÂ+

α2Â2

2!
+ ...

)
, (184)

where I is the identity matrix. The trace of I is clearly 3 and the trace of αÂ is α(a11 + a22 + a33), but the trace
of (α2Â2)/2 is a little more complicated to obtain. First we have to multiply Â by Â and than we can take the trace.
And finally we have

Tr(e−αÂ) =

3∑
i=1

(
1− αaii +

α2

2

3∑
j=1

aijaji + ...
)
. (185)

We can observe that this result is almost the Taylor series of e−αaii . So, if we take a particular case of the matrix
Â, where the non-diagonal elements are zero, which means aij = δijaii, we obtain

Tr(e−αÂ) =

3∑
i=1

(
1− αaii +

α2

2

3∑
j=1

δijaiiδjiaii + ...
)

=

3∑
i=1

(
1− αaii +

α2

2
(aii)

2 + ...
)

=

3∑
i=1

e−αaii . (186)

But can we use this result to calculate the partition function? Only if the non-diagonal matrix elements of our
Hamiltonian are zero. Let’s verify that.
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B. Matrix Elements of the Hamiltonian Operator

The matrix elements of our Hamiltonian operator are given by
〈
n′p′

1
n′p′

2
...n′p′

N

∣∣∣ Ĥ ∣∣np1
np2

...npN
〉
. Where Ĥ is as

given by eq. (165). Let us first calculate the eigenvalues

Ĥ
∣∣np1

np2
...npN

〉
=

∞∑
p=−∞

Ep

(
N̂p +

1

2

) ∣∣np1
np2

...npN
〉

=

∞∑
p=−∞

Ep

(
np +

1

2

) ∣∣np1
np2

...npN
〉
. (187)

So, we have that the eigenvalues, let us call them Enp , are

Enp =

∞∑
p=−∞

Ep

(
np +

1

2

)
=

∞∑
p=−∞

Epnp +
1

2

∞∑
p=−∞

Ep. (188)

Remembering that Ep =
√
p2 +m2 we can see that the second term is divergent, this term is often referred to as

the ground state energy, while the first term represents a real physical quantity that is, for every term of the sum we
have the total energy of that vertex of the three-dimensional momentum lattice.

Now we can multiply eq. (187) by the eigenstate Bra and, as the eigenvalues that we found are numbers, we have

〈
n′p′

1
n′p′

2
...n′p′

N

∣∣∣ Ĥ ∣∣np1
np2

...npN
〉

=

∞∑
p=−∞

Ep

(
np +

1

2

)〈
n′p′

1
n′p′

2
...n′p′

N

∣∣∣np1
np2

...npN

〉
. (189)

Now let’s take a look at this Bra-Ket. We know that 〈n′|n〉 = δ(n′−n), where δ(n′−n) is a Kronecker delta. But,
in our case, the eigenstates also depend on the momentum p. So we have

〈
n′p′

∣∣∣np〉 = δ(n′p′ − np)δ(p′ − p) for every
np

〈
n′p′

1
n′p′

2
...n′p′

N

∣∣∣np1
np2

...npN

〉
=
〈
n′p′

1

∣∣∣np1

〉〈
n′p′

2

∣∣∣np2

〉
...
〈
n′p′

N

∣∣∣npN〉
= δ(n′p′

1
− np1

)δ(p′1 − p1)δ(n′p′
2
− np2

)δ(p′2 − p2)...δ(n′p′
N
− npN )δ(p′N − pN )

=

N∏
i=1

δ(n′p′
i
− npi)δ(p

′
i − pi). (190)

We finally have our matrix elements of the Hamiltonian operator

〈
n′p′

1
n′p′

2
...n′p′

N

∣∣∣ Ĥ ∣∣np1
np2

...npN
〉

=

∞∑
p=−∞

Ep

(
np +

1

2

) N∏
i=1

δ(n′p′
i
− npi)δ(p

′
i − pi). (191)

With that we can see that only the diagonal elements of this matrix are non-zero, which is exactly what we need to
use the result obtained at the previous subsection. The diagonal elements are

〈
np1

np2
...npN

∣∣ Ĥ ∣∣np1
np2

...npN
〉

=

∞∑
p=−∞

Ep

(
np +

1

2

)
. (192)

C. The Partition Function of the Real Scalar Field

Now we have everything we need to calculate the partition function of the real scalar field:
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Z = Tr(e−βĤ) =

∞∑
np1

=0

∞∑
np2

=0

...

∞∑
npN

=0

〈
np1

np2
...npN

∣∣ e−βĤ ∣∣np1
np2

...npN
〉
. (193)

Let us ignore for now the summations and focus only on the Bra-Ket. As was done on eq. (184), the exponential here
can also be expanded

〈
np1

np2
...npN

∣∣ e−βĤ ∣∣np1
np2

...npN
〉

=
〈
np1

np2
...npN

∣∣ I − βĤ +
β2Ĥ2

2
+ ...

∣∣np1
np2

...npN
〉

=
〈
np1

np2
...npN

∣∣ I − βEnp +
β2E2

np

2
+ ...

∣∣np1
np2

...npN
〉

= I − βEnp +
β2E2

np

2
+ ... = e−βEnp

= exp
[
− β

∞∑
p=−∞

Ep

(
np +

1

2

)]
. (194)

Going back to eq. (193), we have

Z = Tr(e−βĤ) =

∞∑
np1=0

∞∑
np2=0

...

∞∑
npN

=0

exp
[
− β

∞∑
p=−∞

Ep

(
np +

1

2

)]

=
[ ∞∑
np1=0

exp
[
− βEp1

(
np1

+
1

2

)]][ ∞∑
np2=0

exp
[
− βEp2

(
np2

+
1

2

)]]
...
[ ∞∑
npN

=0

exp
[
− βEpN

(
npN +

1

2

)]]

=

∞∏
p=−∞

[ ∞∑
np=0

exp
[
− βEp

(
np +

1

2

)]]
. (195)

This equation can be even more simplified. We can observe that e−
βEp

2 can be taking out of the summation and
then the term left can be identified with

∞∑
n=0

xn =
1

1− x
, (196)

where x < 1. This identity can be found at chapter 5 of Ref. [2]. As the exponent of e−βEp contains only positive
terms, it satisfies the condition to be less than zero. And so we finally have

Z =
∏
p

[ e−
βEp

2

1− e−βEp

]
= exp

(
−β

2

∑
p

Ep

)∏
p

[
1

1− e−βEp

]
. (197)

This is the final form of the partition function with which further calculations will be done. We can observe that the
first term is, again, divergent. And we can again call it the vacuum term. If we want, we can simplify the above
equation even more as

Z =
∏
p

[ e−
βEp

2

1− e−βEp

]
=
∏
p

[ 1

e
βEp

2 − e−
βEp

2

]
= 2

∏
p

[
sinh

(βEp

2

)]−1

. (198)
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D. Thermodynamic Potential

The thermodynamic potential is defined as in Eq.(10.78) from Ref.[4] as

Ω = − 1

β
lnZ. (199)

Let us calculate the Natural logarithm of the partition function. From eq. (197)

lnZ = ln
{
exp

(
−β

2

∑
p

Ep

)
+ ln

[∏
p

(
1

1− e−βEp

)]

= −β
2

∑
p

Ep +
∑
p

ln

(
1

1− e−βEp

)
= −β

2

∑
p

Ep −
∑
p

ln
(
1− e−βEp

)
(200)

and so we have

Ω =
1

2

∑
p

Ep +
1

β

∑
p

ln
(
1− e−βEp

)
. (201)

E. Main Thermodynamic Quantities

In this section we want to calculate the averages of the number of the particles, energy and momentum as well as
the pressure of the system. In order to do that we first define the statistical operator ρ̂ [6]:

ρ̂ =
1

Z
e−βĤ , (202)

where was considered that the chemical potential µ is equal to zero.
The average of any operator Â can be calculated using the following identity [4]:

< A >= Tr(ρ̂Â). (203)

So, if we want to calculate the average of the number of particles np we have

< np > = Tr(ρ̂N̂p) = Tr(ρ̂âpâ
†
p)

=
1

Z
∑
np1

∑
np2

...
∑
npN

〈
np1

np2
...npN

∣∣ e−βĤN̂p

∣∣np1
np2

...npN
〉

=
1

Z
∑
np1

∑
np2

...
∑
npN

np
〈
np1

np2
...npN

∣∣ e−βĤ ∣∣np1
np2

...npN
〉

=
1

Z
∑
np1

∑
np2

...
∑
npN

npexp
[
− β

∑
p

Ep

(
np +

1

2

)]
. (204)

At the last line was used the result obtained at eq. (194). We observe that a exponential of a summation is a product
of exponentials. This property was already used at eq. (195). With that we have
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< np > =
1

Z
∑
np1

exp
[
− βEp1

(
np1

+
1

2

)]∑
np2

exp
[
− βEp2

(
np2

+
1

2

)]
...

...
∑
np

npexp
[
− βEp

(
np +

1

2

)]
...
∑
npN

exp
[
− βEpN

(
npN +

1

2

)]

=

∑
np
npexp

[
− βEp

(
np + 1

2

)]
∑
np
exp
[
− βEp

(
np + 1

2

)] =

∑
np
npexp

(
− βEpnp

)
∑
np
exp
(
− βEpnp

) . (205)

At the last line was used eq. (195). The term at the denominator can be simplified using eq. (196), but for the
numerator we need

x
d

dx

∞∑
n=0

xn =

∞∑
n=0

nxn =
x

(1− x)2
(206)

and so we are left with

< np > =

∑
np
npexp

(
− βEpnp

)
∑
np
exp
(
− βEpnp

)
=

e−βEp

(1− e−βEp)2

(1− e−βEp)

1

=
e−βEp

1− e−βEp
. (207)

Finally we have

< np >=
1

eβEp − 1
. (208)

In a similar way we can also calculate the average energy. For that we use the Hamiltonian given by eq. (165):

< H >= Tr(ρ̂Ĥ) =
1

Z
∑
np1

∑
np2

...
∑
npN

〈
np1

np2
...npN

∣∣ e−βĤĤ ∣∣np1
np2

...npN
〉

=
1

Z
∑
np1

∑
np2

...
∑
npN

〈
np1

np2
...npN

∣∣ e−βĤ∑
p

Ep

(
N̂p +

1

2

) ∣∣np1
np2

...npN
〉

=
1

Z
∑
np1

∑
np2

...
∑
npN

∑
p

Ep

(
np +

1

2

) 〈
np1

np2
...npN

∣∣ e−βĤ ∣∣np1
np2

...npN
〉

=
1

Z
∑
np1

∑
np2

...
∑
npN

∑
p

Ep

(
np +

1

2

)
exp
[
− β

∑
p

Ep′

(
np′ +

1

2

)]
. (209)

This equation can be separated into two equations

< H > =
1

Z
∑
np1

∑
np2

...
∑
npN

∑
p

Epnpexp
[
− β

∑
p

Ep′

(
np′ +

1

2

)]
+

1

Z
∑
np1

∑
np2

...
∑
npN

∑
p

Ep

2
exp
[
− β

∑
p

Ep′

(
np′ +

1

2

)]
. (210)
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Similar as was done in the calculations for the average number of particles, here we try to identify what is equal on
the numerator and denominator. For the second term it is easy to see that the numerator and denominator are almost
the same, only the summation over p that is different. For the first term we have a situation similar as at eq. (205)

< H > =
∑
p

Ep

∑
np
npexp

(
− βEpnp

)
∑
np
exp
(
− βEpnp

) +
∑
p

Ep

2

=
∑
p

Ep
1

(eβEp − 1)
+
∑
p

Ep

2
(211)

and we have our final result for the average energy

< H >=
∑
p

Ep

2
+
∑
p

Ep

(eβEp − 1)
. (212)

For the calculations of the average momentum we have to use eq. (164). As can be observed, this equation is not
very different from the one of the Hamiltonian, therefore, the calculations here are very much same

< P > = Tr(ρ̂P̂ ) =
1

Z
∑
np1

∑
np2

...
∑
npN

〈
np1

np2
...npN

∣∣ e−βĤP̂
∣∣np1

np2
...npN

〉
=

1

Z
∑
np1

∑
np2

...
∑
npN

〈
np1

np2
...npN

∣∣ e−βĤ∑
p

p
(
N̂p +

1

2

) ∣∣np1
np2

...npN
〉

=
1

Z
∑
np1

∑
np2

...
∑
npN

∑
p

p
(
np +

1

2

)
exp
[
− β

∑
p

Ep′

(
np′ +

1

2

)]
=
∑
p

p
1

(eβEp − 1)
+
∑
p

p

2
(213)

and we have the finally form of the average momentum

< P >=
∑
p

p

2
+
∑
p

p
1

(eβEp − 1)
. (214)

The pressure can be calculated through the following relation

P = −Tr
(
ρ̂
∂Ĥ

∂V

)
, (215)

where the chemical potential µ = 0. The Hamiltonian is the one given by eq. (165) and we have to remember that the
energy Ep is given by Ep =

√
p2 +m2 where p = 2πk/L and L = V 1/3. With that, the derivation of the Hamiltonian

is going to be

∂Ĥ

∂V
=
∑
p

(
∂Ep

∂V

)(
Np +

1

2

)
. (216)

Let us calculate the derivation of the energy
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∂Ep

∂V
=

∂

∂V

√√√√( 2πk

V 1/3

)2

+m2

=
1

2

[(
2πk

V 1/3

)2

+m2

]−1/2(
− 2

3

)
V −2/3(2πk)2

= −1

3

p2

V Ep
. (217)

Replacing this result into eq.(216), we have

∂Ĥ

∂V
= − 1

3V

∑
p

p2

Ep

(
Np +

1

2

)
. (218)

Comparing this result with the Hamiltonian that was used to do the calculations of the average energy and to the
equation of the momentum we can see that the equation above is very similar, resulting on very similar calculations
for the pressure

P = −Tr
(
ρ̂
∂Ĥ

∂V

)
= − 1

Z
∑
np1

∑
np2

...
∑
npN

〈
np1

np2
...npN

∣∣ e−βĤ (− 1

3V

)∑
p

p2

Ep

(
Np +

1

2

) ∣∣np1
np2

...npN
〉

=
1

Z
1

3V

∑
np1

∑
np2

...
∑
npN

∑
p

p2

Ep

(
np +

1

2

)
exp
[
− β

∑
p

Ep′

(
np′ +

1

2

)]
=

1

3V

∑
p

p2

Ep

1

(eβEp − 1)
+

1

3V

∑
p

p2

2Ep
. (219)

And we finally have the result for the pressure

P =
1

3V

∑
p

p2

2Ep
+

1

3V

∑
p

p2

Ep

1

(eβEp − 1)
. (220)

V. PATH INTEGRAL

In this section we obtain analytically the partition function on the lattice in the configuration space in one spatial
dimension by the path integral method and than, using the discrete Fourier transform, the partition function in
the momentum space is obtained. The generalization to the three spatial dimension is done. Finally, the main
thermodynamic results are obtained and compared with the results obtained on the previous section. The caculations
made here follow the deriavations given in the paper [6].

A. Configuration space

The partition function given by eq. (183) can be rewritten in the path integral method as

Z =

∫
[dφ] 〈φ| eβĤ |φ〉 , (221)

where the Hamiltonian operator Ĥ is given by
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Ĥ =

∫
d3xĤ

(
π̂(x, 0), φ̂(x, 0)

)
(222)

and the Hamiltonian density is as in eq. (85)

Ĥ
(
π̂(x, 0), φ̂(x, 0)

)
=

1

2

[
π̂2(x, 0) + (∇φ̂(x, 0))2 +m2φ̂2(x, 0)

]
. (223)

All the operators are defined in the Schrödinger representation and do not depend on time t. From now on we
introduce a shorter notation φ̂(x, 0) ≡ φ̂(x) and π̂(x, 0) ≡ π̂(x). In this picture we also have the following relations

φ̂(x)
∣∣∣φ̂(x)

〉
= φ(x)

∣∣∣φ̂(x)
〉

π̂(x) |π̂(x)〉 = π(x) |π̂(x)〉 . (224)

In order to use the path integral method we need to dicretize β and the volume V . For that we divide β into Nβ
intervals of length aβ , so that β = aβNβ and the volume V of the system is divided into N3

σ small cells, each with
volume a3

σ so that V = L3
σ and Lσ = aσNσ. The small intervals on the β-axis are labeled by the integer nβ = 1, ..., Nβ

and the space cells in V are fixed by the integer vector n = (nx, ny, nz) with the coordinates nα = 1, ..., Nσ. The
discretized β and volume V form a 4-dimensional lattice Γ the cells of which are given by the vector nν = (n, nβ). So
we have that for each cell nν there is a field operator φ̂(nν) with an eigenstate |φ(nν)〉 and eigenvalue φ(nν). From
now on we use another notation φ̂l,i ≡ φ̂(nν) (l ∈ Λ3, i = nβ), where l is an integer and Λ3 is the 3-dimensional
subspace of the lattice Λ.

The partition function can be written as

Z = lim
Nσ,Nβ→∞

Zlat, (225)

where Zlat for the 3-dimensional space is given by

Zlat =

∫ ( ∏
n∈Λ3

dφn,1

)〈
φ1,1, ..., φN3

σ,1

∣∣ e−aβĤ ...e−aβĤ ∣∣φ1,1, ..., φN3
σ,1

〉
. (226)

It is easier to calculate the Zlat in one spatial dimension. In that case we have

Zlat =

∫ (Nσ∏
l=1

dφl,1

)
〈φ1,1, ..., φNσ,1| e−aβĤ ...e−aβĤ |φ1,1, ..., φNσ,1〉 . (227)

The state vectors are orthogonal

〈φi|φj〉 = 〈φ1,i, ..., φNσ,i|φ1,i, ..., φNσ,j〉 =

Nσ∏
l=1

δ(φ1,i − φ1,j), (228)

〈πi|πj〉 =
2π

aσ
〈π1,i, ..., πNσ,i|π1,i, ..., πNσ,j〉 =

Nσ∏
l=1

2π

aσ
δ(φ1,i − φ1,j) (229)

and complete

1 =

∫ Nσ∏
l=1

dφ1,i |φi〉 〈φi| =
∫ Nσ∏

l=1

dφ1,i |φ1,i, ..., φNσ,i〉 〈φ1,i, ..., φNσ,i| , (230)



33

1 =

∫ Nσ∏
l=1

aσ
2π
dπ1,i |πi〉 〈πi| =

∫ Nσ∏
l=1

aσ
2π
dπ1,i |π1,i, ..., πNσ,i〉 〈π1,i, ..., πNσ,i| . (231)

To solve eq. (227) we insert in the left side of each i-th exponent the product of two unit operators for the fields |φi+1〉
and |πi〉

Zlat =

∫ (Nσ∏
l=1

dφl,1

)∫ Nβ∏
i=1

Nσ∏
l=1

aσdπl,idφl,i+1

2π

〈φ1

∣∣φNβ+1

〉 〈
φNβ+1

∣∣πNβ〉 〈πNβ ∣∣ e−aβĤ ∣∣φNβ〉
〈
φNβ

∣∣πNβ−1

〉 〈
πNβ−1

∣∣ e−aβĤ ∣∣φNβ−1

〉
... 〈φ3|π2〉 e−aβĤ |φ2〉 〈φ2|π1〉 〈π1| e−aβĤ |φ1〉

=

∫ (Nσ∏
l=1

dφl,1

)∫ Nβ∏
i=1

Nσ∏
l=1

aσdπl,idφl,i+1

2π

〈φ1

∣∣φNβ+1

〉 Nβ∏
i=1

〈φi+1|πi〉 〈πi| e−aβĤ |φi〉 . (232)

We can now calculate the matrix elements 〈πi| e−aβĤ |φi〉. For that we make a expansion of the exponential

〈πi| e−aβĤ |φi〉 = 〈πi| 1−
aβĤ

1!
+
a2
βĤ

2

2!
+ ... |φi〉 (233)

and use the Hamiltonian operator given by eq. (223) in the discrete form. For only one spatial dimension the identity(∫
dx↔ aσ

Nσ∑
l=1

)
can be used and we have to remember the definition of a derivation as follows

∂φ̂(x)

∂x
=
φ̂(x+ ∆x)− φ̂(x)

∆x
=
φ̂l+1,i − φ̂l,i

aσ
(234)

and so we have our Hamiltonian operator in the discrete form

Ĥ =
1

2
aσ

Nσ∑
l=1

π̂2
l,i +

(
φ̂l+1,i − φ̂l,i

aσ

)2

+m2φ̂2
l,i

 . (235)

Let us take a look at the second term of the expansion in eq. (233). The matrix element

〈πi| Ĥ |φi〉 = 〈πi|
1

2
aσ

Nσ∑
l=1

π̂2
l,i +

(
φ̂l+1,i − φ̂l,i

aσ

)2

+m2φ̂2
l,i

 |φi〉
=

1

2
aσ

Nσ∑
l=1

[
π2
l,i +

(
φl+1,i − φl,i

aσ

)2

+m2φ2
l,i

]
〈πi|φi〉 , (236)

where we used eq. (224). Replacing this into eq. (233), we have

〈πi| e−aβĤ |φi〉 = 〈πi|φi〉

[
1− aσaβ

2

Nσ∑
l=1

(
π2
l,i +

(
φl+1,i − φl,i

aσ

)2

+m2φ2
l,i

)
+ ...

]

= 〈πi|φi〉 e
−
aσaβ

2

∑Nσ
l=1

(
π2
l,i+

(
φl+1,i−φl,i

aσ

)2
+m2φ2

l,i

)
. (237)

We also have
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〈πi|φi〉 = e−iaσ
∑Nσ
l=1 πl,iφl,i

〈φi+1|πi〉 = eiaσ
∑Nσ
l=1 πl,iφl,i+1 . (238)

Substituting eqs. (237) and (238) into eq. (232), we obtain

Zlat =

∫ (Nσ∏
l=1

dφl,1

)∫ Nβ∏
i=1

Nσ∏
l=1

aσdπl,idφl,i+1

2π

〈φ1

∣∣φNβ+1

〉
e
−aσaβ

∑Nβ
i=1

∑Nσ
l=1

[
1
2π

2
l,i+

1
2

(
φl+1,i−φl,i

aσ

)2
+ 1

2m
2φ2
l,i−iπl,i

(
φl,i+1−φl,i

aβ

)]
. (239)

Now let us take a look at the integration over πl,i. To solve it we can use the result

∫ ∞
−∞

dxe−αx
2+βx = e

β2

4α

(π
α

)1/2

(240)

and identify α =
aσaβ

2
and β = iaσaβ

(
φl,i+1 − φl,i

aβ

)
. With that we obtain

∫ ∞
−∞

Nβ∏
i=1

Nσ∏
l=1

aσ
2π
dπl,ie

−aσaβ
∑Nβ
i=1

∑Nσ
l=1

[
1
2π

2
l,i−iaσaβ

(
φl,i+1−φl,i

aβ

)]

=

(
aσ

2πaβ

)NβNσ

2

e
−
aσaβ

2

∑Nβ
i=1

∑Nσ
l=1

(
φl,i+1−φl,i

aβ

)2

=

Nβ∏
i=1

Nσ∏
l=1

(
aσ

2πaβ

)1/2

e
−
aσaβ

2

(
φl,i+1−φl,i

aβ

)2

. (241)

Substituting this result into eq. (239) we have

Zlat =

(
aσ

2πaβ

)NβNσ

2
∫ (Nσ∏

l=1

dφl,1

)Nβ∏
i=1

Nσ∏
l=1

dφl,i+1

〈φ1

∣∣φNβ+1

〉
e
−aσaβ

∑Nβ
i=1

∑Nσ
l=1

[
1
2

(
φl,i+1−φl,i

aβ

)2
+ 1

2

(
φl+1,i−φl,i

aσ

)2
+
m2φ2l,i

2

]
. (242)

Now we want to use eq. (228) to make some simplifications. For that, it is also interesting if we rewrite the products
that appear in the equation above

(
Nσ∏
l=1

dφl,1

)Nβ∏
i=1

Nσ∏
l=1

dφl,i+1

 =

Nσ∏
l=1

dφl,1dφl,2dφl,3...dφl,Nβ+1

=

Nσ∏
l=1

Nβ∏
i=1

dφl,i

 dφl,Nβ+1

=

Nσ∏
l=1

Nβ∏
i=1

dφl,i

(Nσ∏
l=1

dφl,Nβ+1

)
. (243)

Replacing this into eq. (242) and using eq. (228), we have
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Zlat =

(
aσ

2πaβ

)NβNσ

2
∫ Nσ∏

l=1

Nβ∏
i=1

dφl,i

(Nσ∏
l=1

dφl,Nβ+1

)
Nσ∏
l=1

δ
(
φl,1 − φl,Nβ+1

)
e
−aσaβ

∑Nβ
i=1

∑Nσ
l=1

[
1
2

(
φl,i+1−φl,i

aβ

)2
+ 1

2

(
φl+1,i−φl,i

aσ

)2
+
m2φ2l,i

2

]

=

(
aσ

2πaβ

)NβNσ

2

Nσ∏
l=1

Nβ∏
i=1

dφl,i

 e
−aσaβ

∑Nβ
i=1

∑Nσ
l=1

[
1
2

(
φl,i+1−φl,i

aβ

)2
+ 1

2

(
φl+1,i−φl,i

aσ

)2
+
m2φ2l,i

2

]
(244)

with the conditions that

φNσ+1,i = φ1,i and φl,Nβ+1 = φl,1. (245)

Now our aim is to write the function in the exponent of eq. (244) into the bilinear form, which means that we want

it into the xTAy =

n∑
i=1

n∑
j=1

aijxiyj form, where A is a n x n matrix. Let us call the function in the exponent D(φ)

and take a closer look at it:

D(φ) = −aσaβ
Nβ∑
i=1

Nσ∑
l=1

[
1

2

(
φl,i+1 − φl,i

aβ

)2

+
1

2

(
φl+1,i − φl,i

aσ

)2

+
m2φ2

l,i

2

]

= −aσaβ
Nβ∑
i=1

Nσ∑
l=1

[
1

2

(
φ2
l,i+1 + φ2

l,i − 2φl,i+1φl,i

a2
β

)
+

1

2

(
φ2
l+1,i + φ2

l,i − 2φl+1,iφl,i

a2
σ

)
+
m2φ2

l,i

2

]
. (246)

We can see that there are five types of summations in D(φ). Using the conditions (245) it is easy to verify that three
of them are equal

Nσ∑
l=1

Nβ∑
i=1

φ2
l,i =

Nσ∑
l=1

Nβ∑
i=1

φ2
l,i+1 =

Nσ∑
l=1

Nβ∑
i=1

φ2
l+1,i

=

Nσ∑
l=1

Nβ∑
i=1

Nσ∑
k=1

Nβ∑
j=1

φl,iδk,lδj,iφk,j , (247)

where at the last line was used φl,i =

Nσ∑
k=1

Nβ∑
j=1

δk,lδj,iφk,j . The other two summations, being
Nσ∑
l=1

Nβ∑
i=1

φl,i+1φl,i and

Nσ∑
l=1

Nβ∑
i=1

φl+1,iφl,i, need to be looked at a little bit closer

Nσ∑
l=1

Nβ∑
i=1

φl,i+1φl,i =

Nσ∑
l=1

Nβ−1∑
i=1

φl,i+1φl,i +

Nσ∑
l=1

φl,Nβ+1φl,Nβ =

Nσ∑
l=1

Nβ∑
i=1

[
(1− δi,Nβ )φl,i+1 + δi,Nβφl,1

]
φl,i

=
1

2

Nσ∑
l=1

Nβ∑
i=1

[
(1− δi,Nβ )φl,i+1 + δi,Nβφl,1

]
φl,i +

1

2

Nσ∑
k=1

Nβ∑
j=1

[
(1− δj,Nβ )φk,j+1 + δj,Nβφk,1

]
φk,j

=
1

2

Nσ∑
l=1

Nβ∑
i=1

Nσ∑
k=1

Nβ∑
j=1

δl,k
[
(1− δi,Nβ )δj,i+1 + δi,Nβδj,1 + (1− δj,Nβ )δi,j+1 + δj,Nβδi,1

]
φk,jφl,i, (248)

where we used the same tactic as was used at the last line of eq. (247). Doing similar calculations for the summation
left we end up with
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Nσ∑
l=1

Nβ∑
i=1

φl+1,iφl,i =
1

2

Nσ∑
l=1

Nβ∑
i=1

Nσ∑
k=1

Nβ∑
j=1

δi,j [(1− δl,Nσ )δk,l+1 + δl,Nσδk,1 + (1− δk,Nσ )δl,k+1 + δk,Nσδl,1]φk,jφl,i. (249)

Now we can replace the results obtained on eqs. (247), (248) and (249) into eq. (244):

Zlat =

(
aσ

2πaβ

)NβNσ

2
∫ Nσ∏

l=1

Nβ∏
i=1

dφl,i

 exp

{
− aσaβ

( 1

a2
β

+
1

a2
σ

+
m2

2

)Nσ∑
l=1

Nβ∑
i=1

φ2
l,i


−

Nσ∑
l=1

Nβ∑
i=1

(
φl,i+1φl,i

a2
β

+
φl+1,iφl,i

a2
σ

)}

=

(
aσ

2πaβ

)NβNσ

2

Nσ∏
l=1

Nβ∏
i=1

dφl,i

 exp

{
− aσaβ

{
Nσ∑
l=1

Nβ∑
i=1

Nσ∑
k=1

Nβ∑
j=1

[(
1

a2
β

+
1

a2
σ

+
m2

2

)
δk,lδj,i

− 1

2a2
β

{
δl,k

[
(1− δi,Nβ )δj,i+1 + δi,Nβδj,1 + (1− δj,Nβ )δi,j+1 + δj,Nβδi,1

] }
− 1

2a2
σ

{δi,j [(1− δl,Nσ )δk,l+1 + δl,Nσδk,1 + (1− δk,Nσ )δl,k+1 + δk,Nσδl,1]φk,jφl,i}

]
φk,jφl,i

}}
. (250)

We can rewrite this expression in terms of φ
′

l,i where φ
′

l,i =

(
aσ
2aβ

)1/2

φl,i :

Zlat = π−
NβNσ

2

∫ Nσ∏
l=1

Nβ∏
i=1

dφ
′

l,i

 exp

{
−

Nσ∑
l=1

Nβ∑
i=1

Nσ∑
k=1

Nβ∑
j=1

[(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)
δk,lδj,i

− δl,k
[
(1− δi,Nβ )δj,i+1 + δi,Nβδj,1 + (1− δj,Nβ )δi,j+1 + δj,Nβδi,1

]
−
a2
β

a2
σ

{δi,j [(1− δl,Nσ )δk,l+1 + δl,Nσδk,1 + (1− δk,Nσ )δl,k+1 + δk,Nσδl,1]φk,jφl,i}

]
φ
′

k,jφ
′

l,i

}
. (251)

And now we can see that the function in the exponent is in a bilinear form and we can identify A′li,kj as

A′li,kj =

(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)
δk,lδj,i − δl,k

[
(1− δi,Nβ )δj,i+1 + δi,Nβδj,1 + (1− δj,Nβ )δi,j+1 + δj,Nβδi,1

]
−
a2
β

a2
σ

δi,j [(1− δl,Nσ )δk,l+1 + δl,Nσδk,1 + (1− δk,Nσ )δl,k+1 + δk,Nσδl,1] (252)

resulting in

Zlat = π−
NβNσ

2

∫ Nσ∏
l=1

Nβ∏
i=1

dφ
′

l,ie
−
∑Nσ
l=1

∑Nβ
i=1

∑Nσ
k=1

∑Nβ
j=1 A

′
li,kjφ

′
k,jφ

′
l,i . (253)

We can also substitute the coordinates by the number of the site on the lattice in the configuration space J(l, i),
where J(l, i) = Nβ(l − 1) + i. And so we finally have

Zlat = π−
NβNσ

2

∫ ∞
−∞

Nσ∏
l=1

Nβ∏
i=1

dΦJ(l,i)e
−
∑Nσ
l=1

∑Nβ
i=1

∑Nσ
k=1

∑Nβ
j=1 AJ(l,i)J(k,j)ΦJ(l,i)ΦJ(k,j) . (254)

To solve this integral we can use the following formula for Riemann integrals
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∫ ∞
−∞

dx1...dxne
−xiDijxj =

πn/2√
detD

. (255)

And so we have

Zlat =
1√
detA

. (256)

Replacing this result into eq. (225), we have our partition function in the configuration space:

Z = lim
NβNσ→∞

1√
detA

. (257)

B. Momentum space

In this section we want to rewrite the partition function in the momentum space on the basis of the Fourier transform
defined on the lattice. Let us start with the calculations of the four-dimensional momentum.

The wave function in one-dimensional and continuous space is given by

upx(x) =
1√
L
eipxx. (258)

If we confine this wave in a line of length L, we have the boundary conditions upx(0) = upx(L), which gives us
eipxL = 1, resulting in

px =
2π

L
kx with kx = 0,±1,±2, ... (259)

If we dicretize our x-axis, we have x = aσl, where l = 1, ..., Nσ, L = aσNσ and our wave function is

upx(x) =
1√
L
eipxaσl. (260)

And in this case, our boundary conditions are upx(aσ(Nσ + 1)) = upx(aσ), which gives us eipxaσNσ = 1, resulting in

px =
2π

aσNσ
kx with kx1 ≤ kx ≤ kx2 (261)

which can be generalized to our four-dimensional lattice

pµ =
2π

aµNµ
kµ with µ = σ, β and kµ1 ≤ kµ ≤ kµ2, (262)

where

kµ1 = −Nµ − 1

2
+
ηµ
2
, (263)

kµ1 =
Nµ − 1

2
+
ηµ
2
, (264)

where we have ηµ = 1 for Nµ even and ηµ = 0 for Nµ odd.
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It is interesting to note that even if the space is not discretized, we have an discretized momentum and, if the space
is discretized, the number of momentums is equal to the number of intervals of the space. The vectors pµ and nµ
satisfy some relations. Using the relation

n∑
k=0

xk =
1− xn+1

1− x
(265)

and adapting it to our case

n∑
k=1

xk =
1− xn+1

1− x
− 1 =

x(1− xn)

1− x
, x 6= 0 (266)

we have

1

Nµ

Nµ∑
nµ=1

e
2πi
Nµ

(
kµ−k

′
µ

)
nµ =

1

Nµ

e
2πi
Nµ

(
kµ−k

′
µ

)(
1− e2πi

(
kµ−k

′
µ

))
1− e

2πi
Nµ

(kµ−k′µ)
= δkµ,k′µ (267)

and

1

Nµ

kµ=kµ2∑
kµ=kµ1

e
2πi
Nµ

(
nµ−n

′
µ

)
kµ = 1 if nµ − n

′

µ = 0. (268)

In order to solve this summation for the case where nµ− n
′

µ 6= 0 we have to have the summation start at kµ = 1. For
that we can make the substitution k

′

µ = kµ − kµ1 + 1, which gives us

1

Nµ
e

2πi
Nµ

(
nµ−n

′
µ

)
(kµ1−1)

Nµ∑
k′µ=1

e
2πi
Nµ

(
nµ−n

′
µ

)
k
′
µ

=
1

Nµ
e

2πi
Nµ

(
nµ−n

′
µ

)
(kµ1−1) 1− e2πi

(
nµ−n

′
µ

)
1− e

2πi
Nµ

(nµ−n′µ)
e

2πi
Nµ

(
nµ−n

′
µ

)

= 0 , if nµ − n
′

µ 6= 0. (269)

Putting the two results together, we have the following relation for nµ

1

Nµ

kµ=kµ2∑
kµ=kµ1

e
2πi
Nµ

(
nµ−n

′
µ

)
kµ = δnµ,n′µ . (270)

We also have

1

Nµ

Nµ∑
nµ=1

e
iaµ
(
pµ−p

′
µ

)
nµ =

1

Nµ

Nµ∑
nµ=1

e
2πi
Nµ

(
kµ−k

′
µ

)
nµ = δkµ+k′µ,0

+ ηµδkµ+k′µ,Nµ
. (271)

Then the Fourier transform for the lattice field ΦJ(l,i) and its inverse transform can be written as

ΦJ(l,i) =
1√
NσNβ

kx2∑
kx=kx1

kβ2∑
kβ=kβ1

fI(kx,kβ)e
i(aσpxl+aβpβi), (272)
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fI(kx,kβ) =
1√
NσNβ

Nσ∑
l=1

Nβ∑
i=1

ΦJ(l,i)e
−i(aσpxl+aβpβi), (273)

where the index I(kx, kβ) ≡ Nβ(kx − kx1) + kβ − kβ1 + 1 is the number of the site on the lattice in the momentum
space and px = 2πkx/aσNσ and pβ = 2πkβ/aβNβ . Let’s check if this transformations are correct, for that, we merely
substitute eq. (273) into eq. (272). If the transformations are correct, we will obtain ΦJ(l,i)

ΦJ(l,i) =
1

NσNβ

Nσ∑
l′=1

Nβ∑
i′=1

ΦJ(l′,i′)

kx2∑
kx=kx1

kβ2∑
kβ=kβ1

e−i(aσpx(l′−l)+aβpβ(i′−i))

=

Nσ∑
l′=1

Nβ∑
i′=1

ΦJ(l′,i′)δl′,lδi′,i = ΦJ(l,i). (274)

The neutral scalar field is real, so Φ∗J = ΦJ . Therefore, the complex function fI(kx,kβ) can be represented by its
amplitude and phase in the form

fI(kx,kβ) = RI(kx,kβ)e
i(aσpx+aβpβ). (275)

Substituting this into eq. (272), we have

ΦJ(l,i) =
1√
NσNβ

kx2∑
kx=kx1

kβ2∑
kβ=kβ1

RI(kx,kβ)e
i[aσpx(1+l)+aβpβ(1+i)] (276)

and into eq. (273)

RI(kx,kβ) =
1√
NσNβ

Nσ∑
l=1

Nβ∑
i=1

ΦJ(l,i)e
−i[aσpx(1+l)+aβpβ(1+i)]. (277)

And so we can rewrite eq. (254) as

Zlat = π−
NσNβ

2 |detJ |
NσNβ∏
I=1

dRIexp

{
−

kx2∑
kx=kx1

kβ2∑
kβ=kβ1

kx2∑
k′x=kx1

kβ2∑
k
′
β=kβ1

RI(kx,kβ)RI(k′x,k
′
β)BI(kx,kβ),I(k′x,k

′
β)

}
, (278)

where J is the Jacobian matrix and

BI(kx,kβ),I(k′x,k
′
β) =

NσNβ∑
J=1

NσNβ∑
J′=1

AJ,J ′

NσNβ
exp
{

i
[
aσ[px(1 + l) + p′x(1 + l′)] + aβ [pβ(1 + i) + p′β(1 + i′)]

] }
, (279)

AJ,J ′ =

(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)
δl′,lδi,i′

− δl,l′
[
(1− δi,Nβ )δi′,i+1 + δi,Nβδi′,1 + (1− δi′,Nβ )δi,i′+1 + δi,Nβδi,1

]
−
a2
β

a2
σ

δi,i′ [(1− δl,Nσ )δl′,l+1 + δl,Nσδl′,1 + (1− δl′,Nσ )δl,l′+1 + δl′,Nσδl,1] . (280)

We can note that BI(kx,kβ),I(k′x,k
′
β) can be separated into three terms, let’s calculate every term separately. Starting

with the first term
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1

NσNβ

NσNβ∑
J,J ′=1

(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)
δl′,lδi,i′e

i[aσ[px(1+l)+p′x(1+l′)]+aβ [pβ(1+i)p′β(1+i′)]]

=
1

NσNβ

NσNβ∑
J=1

(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)
ei[aσ(1+l)(px+p′x)+aβ(1+i)(pβ+p′β)]

=
1

NσNβ

(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)
Nσ∑
l=1

ei[aσ(1+l)(px+p′x)]

Nβ∑
i=1

ei[aβ(1+i)(pβ+p′β)]

=

(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
, (281)

where we used the relation given by eq. (271).
Now we take the second term of BI(kx,kβ),I(k′x,k

′
β):

1

NσNβ

NσNβ∑
J,J ′=1

δl,l′
[
(1− δi,Nβ )δi′,i+1 + δi,Nβδi′,1 + (1− δi′,Nβ )δi,i′+1 + δi′,Nβδi,1

]
ei[aσ[px(1+l)+p′x(1+l′)]+aβ [pβ(1+i)p′β(1+i′)]]

=
1

NσNβ

Nσ∑
l

Nβ∑
i,i′=1

[
(1− δi,Nβ )δi′,i+1 + δi,Nβδi′,1 + (1− δi′,Nβ )δi,i′+1 + δi′,Nβδi,1

]
ei[aσ(1+l)([px+p′x)]+aβ [pβ(1+i)p′β(1+i′)]]

=
(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

){(
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
ei[aσ(px+p′x)+aβ(pβ+2p′β)]

− ei[aσ(px+p′x)+aβ [pβ(1+Nβ)+p′β(2+Nβ)]] + ei[aσ(px+p′x)+aβ [pβ(1+Nβ)+2p′β ]] +
(
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
ei[aσ(px+p′x)+aβpβ ]

− ei[aσ(px+p′x)+aβ [pβ(2+Nβ)+p′β(1+Nβ)]] + ei[aσ(px+p′x)+aβ [2pβ+p′β(1+Nβ)]]

}
=
(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)(
eiaβp

′
β + eiaβpβ

)
+
(
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)(
−eiaβ(pβ(1+Nβ)+p′β(2+Nβ) + eiaβ(pβ(1+Nβ)+2p′β) − eiaβ(pβ(2+Nβ)+p′β(1+Nβ) + eiaβ(2pβ+p′β(1+Nβ)

)
=
(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

) (
e−iaβpβ + eiaβpβ

)
= 2

(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
cos(aβpβ). (282)

For the third term of BI(kx,kβ),I(k′x,k
′
β) the calculations are very similar:

1

NσNβ

a2
β

a2
σ

NσNβ∑
J,J ′=1

δi,i′ [(1− δl,Nσ )δl′,l+1 + δl,Nσδl′,1 + (1− δl′,Nσ )δl,l′+1 + δl′,Nσδl,1] ei[aσ[px(1+l)+p′x(1+l′)]+aβ [pβ(1+i)p′β(1+i′)]]

=
2a2
β

a2
σ

(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
cos(aσpx). (283)

Substituting eqs. (281), (282) and (283) into (279) and (280), we have
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BI(kx,kβ),I(k′x,k
′
β) =

[(
2

(
1 +

a2
β

a2
σ

)
+ a2

βm
2

)
− 2cos(aβpβ)−

2a2
β

a2
σ

cos(aσpx)

]
(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
= a2

β

[(
2

aβ
sin
(aβpβ

2

))2

+

(
2

aσ
sin
(aσpx

2

))2

+m2

]
(
δkx+k′x,0

+ ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
, (284)

where we used the trigonometric identity cos(2θ) = 1− 2sin2(θ). We can rewrite this equation as

BI(kx,kβ),I(k′x,k
′
β) = GI(kx,kβ)

(
δkx+k′x,0 + ηxδkx+k′x,Nσ

) (
δkβ+k′β ,0

+ ηβδkβ+k′β ,Nβ

)
, (285)

where

GI(kx,kβ) = a2
β

[(
2

aβ
sin
(aβpβ

2

))2

+

(
2

aσ
sin
(aσpx

2

))2

+m2

]
. (286)

To solve integral of eq. (278) we can use again the formula for Riemann integrals given by eq. (255) and we have

Zlat =
|detJ |√
detB

. (287)

The matrix B has NσNβ nonzero elements equal to GI(kx,kβ). In any row and any column there is only one nonzero
element. Therefore, the determinant of the matrix B can be written as

detB = χ

kx2∏
kx=kx1

kβ2∏
kβ=kβ1

GI(kx,kβ), (288)

where χ is a factor that can be calculated but we did not calculate it here.
If we substitute eq. (288) into eq. (287) and use the fact that |detJ |/√χ = 1, we have

Zlat =
1√∏kx2

kx=kx1

∏kβ2
kβ=kβ1

GI(kx,kβ)

(289)

which is the result for the Zlat in one spatial dimension of the momentum space. If we generalize this result to three
spatial dimensions, we have

Zlat =
1√∏kσ2

k=kσ1

∏kβ2
kβ=kβ1

GI(k,kβ)

, (290)

GI(k,kβ) = a2
β

[(
2

aβ
sin
(aβpβ

2

))2

+

3∑
α=1

(
2

aσ
sin
(aσpα

2

))2

+m2.

]
(291)



42

C. Thermodynamic Quantities on the Lattice

The thermodynamic quantities on the lattice can now be derived from the partition function (290). The thermo-
dynamic potential is

Ωlat = −T lnZlat =
T

2

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

ln
[
GI(k,kβ)

]

=
T

2

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

ln

{
a2
β

[(
2

aβ
sin
(aβpβ

2

))2

+

3∑
α=1

(
2

aσ
sin
(aσpα

2

))2

+m2

]}
. (292)

The energy on the lattice is

Elat = − ∂

∂β
lnZlat = − 1

Nβ

∂

∂aβ
lnZlat

=
1

2Nβ

∂

∂aβ

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

ln

{
a2
β

[(
2

aβ
sin
(aβpβ

2

))2

+

3∑
α=1

(
2

aσ
sin
(aσpα

2

))2

+m2

]}

=
1

β

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

∑3
α=1

(
2
aσ
sin
(
aσpα

2

))2

+m2(
2
aβ
sin
(aβpβ

2

))2

+
∑3
α=1

(
2
aσ
sin
(
aσpα

2

))2

+m2

. (293)

To calculate the pressure we have to remember that V = L3
σ and Lσ = aσNσ. The pressure is given by

Plat =
1

β

∂

∂V
lnZlat

= − 1

2β

V −2/3

3Nσ

∂

∂aσ

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

ln

{
a2
β

[(
2

aβ
sin
(aβpβ

2

))2

+

3∑
α=1

(
2

aσ
sin
(aσpα

2

))2

+m2

]}

=
1

3βV

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

∑3
α=1

(
2
aσ
sin
(
aσpα

2

))2

(
2
aβ
sin
(aβpβ

2

))2

+
∑3
α=1

(
2
aσ
sin
(
aσpα

2

))2

+m2

. (294)

D. Continuum Limit

In this section we want to find the Energy and the Pressure in the continuum limit, which means that Nσ → ∞,
aσ → 0 at Lσ = const and Nβ →∞, aβ → 0 at β = const.

In order to calculate this limits, it is more interesting to write eqs. (293) and (294) in terms of kµ:

Elat =
1

β

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

∑3
α=1

(
2
aσ
sin
(
πkα
Nσ

))2

+m2(
2
aβ
sin
(
πkβ
Nβ

))2

+
∑3
α=1

(
2
aσ
sin
(
πkα
Nσ

))2

+m2

, (295)

Plat =
1

3βV

kσ2∑
k=kσ1

kβ2∑
kβ=kβ1

∑3
α=1

(
2
aσ
sin
(
πkα
Nσ

))2

(
2
aβ
sin
(
πkβ
Nβ

))2

+
∑3
α=1

(
2
aσ
sin
(
πkα
Nσ

))2

+m2

. (296)
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As Nσ → ∞ and Nβ → ∞ we have that the argument of the sine function is very small and so we can use the
approximation sin(x) = x. Also, from eqs. (263) and (264) it is easy to see that in the continuum limit kσ1 = kβ1 →
−∞ and kσ2 = kβ2 → +∞.

For the energy we have

E = lim
Nσ,Nβ→∞

Elat =
1

β

∞∑
k=−∞

∞∑
kβ=−∞

∑3
α=1

(
2πkα
Lσ

)2

+m2(
2πkβ
β

)2

+
∑3
α=1

(
2πkα
Lσ

)2

+m2

(297)

Using the generating function

∞∑
k=−∞

a2

(2πk)2 + a2
=
a

2
coth

a

2
(298)

we obtain

E =
1

β

∞∑
k=−∞

∞∑
kβ=−∞

β2D2

(2πkβ)2 + β2D2
=

∞∑
k=−∞

D

2
coth

βD

2
, (299)

where

D2 =

3∑
α=1

(
2πkα
Lσ

)2

+m2. (300)

Remembering that coth(x) = (ex + e−x)/2, we can continue our calculations

E =

∞∑
k=−∞

D

2

eβD/2 + e−βD/2

eβD/2 − e−βD/2
=

∞∑
k=−∞

D

2

eβD + 1

eβD − 1

=

∞∑
k=−∞

D

2

(
1 +

2

eβD − 1

)
=

∞∑
k=−∞

D

2
+

∞∑
k=−∞

D

eβD − 1
. (301)

Let us take a closer look at D

D =

[
3∑

α=1

(
2πkα
Lσ

)2

+m2

]1/2

=

[
3∑

α=1

p2
α +m2

]1/2

=
√
p2 +m2 = Ep. (302)

Substituting this into eq. (301), we obtain

E =

∞∑
k=−∞

Ep

2
+

∞∑
k=−∞

Ep

eβEp − 1
(303)

which is the same result as obtained through the method of the second quantization (see eq.(212)).
For the pressure we have very similar calculations. If we observe the similarities between eqs. (295) and (296), it

is easy to see that

P =
1

3βV

∞∑
k=−∞

∞∑
kβ=−∞

D2 −m2(
2πkβ
β

)2

+D2

=
1

3βV

∞∑
k=−∞

∞∑
kβ=−∞

β2D2 − β2m2

(2πkβ)2 + β2D2
. (304)
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Now, if we modify eq.(298) a little

∞∑
k=−∞

1

(2πk)2 + a2
=

1

2a
coth

a

2
(305)

we obtain

P =
1

3βV

∞∑
k=−∞

(β2D2 − β2m2)
1

2βD
coth

(
βD

2

)

=
1

3βV

∞∑
k=−∞

β2D2 − β2m2

2βD

eβD + 1

eβD − 1

=
1

6V

∞∑
k=−∞

E2
p −m2

Ep
+

1

3V

∞∑
k=−∞

E2
p −m2

Ep

1

eβEp − 1
. (306)

If we observe that (E2
p −m2)/Ep = p2/Ep, we obtain

P =
1

3V

∑
p

p2

Ep
+

1

3V

∑
p

p2

Ep

1

(eβEp − 1)
(307)

which is equal to the result obtained through the second quantization method (see eq. (220)).

VI. CONCLUSIONS

The partition function for the real scalar field in a finite volume was obtained by the canonical quantization method
and the result coincides exactly with Eq. (8.8) from Ref. [4]. Also, the main thermodynamic quantities obtained are
in accordance with the ones obtained in the same reference.

The partition function obtained by the path integral method is in accordance with the one obtained in Ref. [6]. We
have also found the exact analytical expressions for some thermodynamic quantities, which are also in accordance to
the ones obtained in Ref. [6].

The comparison between the thermodynamic quantities obtained by the canonical quantization method and by
the path integral method was made and the results agree completely. In both cases the thermodynamic quantities
can be separated into two quantities: a sum over the vacuum and a physical term. The vacuum term is divergent.
Fortunately, from a practical point of view this infinity is rather harmless. Since physical observable involve differences
and not the absolute value of the quantity, the vacuum term always drops out.
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