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1. Introduction

The aim of this project was to develop a program allowing to decode raw output data sent by front-end
electronics of a hexagonal wire chamber detector and to reconstruct particle tracks from this data.
The detector is being developed for the needs of a testbeam facility for the future MPD experiment. It
comprises six planes, each consisting of 96 wires and attached to a custom readout board HRB6ASD
(its documentation can be found online at http://afi.jinr.ru/HRB6ASD). An object-oriented C++
application was created, which consists of two classes, one providing tools for data readout and
decoding and second providing a track reconstruction. Moreover, it comprises a header file providing
tools for drawing an event display and an executable program combining and using all these tools.
The application was named after one of the classes – HrbDecoder. The project is based on the STL
and ROOT libraries.

This report is supposed to help potential users to understand the operation of the program and the
used algorithms. It introduces the quantities used throughout the project, describes the structure of
the program and its operation step by step. Instructions on usage of the application are provided,
as well as results of its operation on a test dataset collected with cosmic rays. The project can be
understood best, when both – the source code and the report – are read in parallel.

2. Input data

Six data files – one for each board/plane – were recorded during a short period of cosmic particle
data taking and they are used as input to the program. Such a data file consists of a set of events
encoded in a binary format described at http://afi.jinr.ru/DataFormatHrb. During the detector
operation, the HRB collects a signal from the wires with a certain sampling interval, ∆t, and records
a certain number of samples, Ns, for each event. In the dataset most extensively used during the
program development, ∆t = 8 ns and Ns = 42, but a different dataset with Ns = 37 was also tested.
The data from an event is encoded in the HRB Raw Data Format and after a set of header information,
contains Ns 128-bit words – one for each time sample. Each of the first 96 bits corresponds to a wire,
whereas the last 32 bits are always empty.

3. Quick start

In order to simply compile and run the program in a bash shell in Linux without changing any settings,
only two commands are needed. Assuming the ROOT libraries are set up properly, the compilation is
done by executing the command make in the program directory. The program is run by simply typing
./runHrbDecoder in the command line, followed by six arguments being the locations of the input
data files. Assuming there is a subdirectory data which contains six .dat files with the HRB data, the
program may be run with the command ./runHrbDecoder data/*.dat.
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4. Definitions

The hexagonal wire chamber comprises six planes, each rotated by an angle of 60◦ with respect to the
preceding plane. The planes are labeled starting from the top: X1, YL1, YL2, X2, YR1, YR2. Each
consists of 96 wires numbered clockwise, as seen in Figure 1. Distance between wires in one plane is
equal to dw = 2.5 mm, whereas the vertical distance between neighbouring planes equals dz = 10.0 mm.
Parallel planes are shifted with respect to each other by half of this width. A right-handed Cartesian
coordinate system is defined with the z-axis pointing upwards, perpendicular to the planes and z = 0
aligned with the X1 plane. The point (x, y) = (0, 0) is located in the middle between 47th wires of all
planes, as seen in Figure 1b. The x-axis is perpendicular to the wires of the X1 and X2 planes and
oriented in the direction of growing number of X2 wires. The y-axis is parallel to the X1 and X2 wires.
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Figure 1: (a) Definition of the coordinate system with respect to the wire positions. Wire numbers are shown
around the detector. (b) Close-up of the central region.

Two auxiliary axes were defined – y1 perpendicular
to YL1 and YR1 wires and y2 perpendicular to
YL2 and YR2 wires, as shown in Figure 2. With
these definitions, wire coordinates in each plane
can be expressed along the corresponding axis.
With nP being the wire number in plane P, they
are defined as follows:

X1 : x = (46.75− nX1) · dw

YL1 : y1 = (nYL1 − 46.75) · dw

YL2 : y2 = (nYL2 − 46.75) · dw

X2 : x = (nX2 − 46.75) · dw

YR1 : y1 = (46.75− nYR1) · dw

YR2 : y2 = (46.75− nYR2) · dw
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Figure 2: Definition of auxiliary axes y1 and y2
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The primary goal of this application is to decode the raw output data sent by the front-end electronics
of each plane and reconstruct a single particle track in each event. In the absence of magnetic field, the
tracks are expected to be straight lines. One of the possible definitions of a three-dimensional straight
line is by a point and a direction vector, another one comprises a point and two angles - azimuthal and
polar. The program uses both, delivering information about a point where the track crosses the z = 0
plane (i.e. the X1 plane), P0 = (x0, y0, 0), azimuthal angle, φ, polar angle, θ, and three coordinates
of normalised particle momentum vector, p = [px, py, pz]. Length of this vector is always equal to
unity. The vertical coordinate pz is assumed to be always negative. Definition of the parameters is
presented in Figure 3. Relations between them are as follows:

px = cosφ | sin θ|

py = sinφ | sin θ|

pz = −| cos θ| = −
√

1− p2
x − p2

y

px, py ∈ [−1; 1]

pz ∈ [−1; 0]

φ ∈ [0; 2π)

θ ∈ [0; π/2]

θ φ
p

pz

px

py

Figure 3: Definition of track parameters

Please note that the polar angle is defined in the opposite direction than usually. In this case, with the
assumption of negative pz, the angle θ remains in the range [0; π/2]. Although sin θ, cos θ and tan θ
are always non-negative in this range, absolute values are still used throughout this report in order to
emphasize this fact. Other useful relations allow to calculate x, y, y1 and y2 coordinates of the track
at any given z:

x(z) = x0 + z px

pz
y1(z) = −1

2x(z) +
√

3
2 y(z)

y(z) = y0 + z
py

pz
y2(z) = 1

2x(z) +
√

3
2 y(z)

5. Structure of the program

The whole project is based on two classes, HrbDecoder and HrbEvent, and an executable program
runHrbDecoder. Additional functions allowing to create event displays are collected in a separate
header file. A basic Makefile was created in order to simplify the compilation of the program. During the
development of the project, also a simple simulation has been performed, which helped to ensure correct
track reconstruction. However, due to a large extent of simplification, the simulation did not include
crucial features of real data. Hence, it is not described in this report. The project uses extensively the
STL and ROOT (v5.34) libraries. Their documentation can be found online at http://cplusplus.com
and http://root.cern.ch respectively.
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5.1. Class HrbDecoder

The class HrbDecoder, defined in the file HrbDecoder.h and implemented in the file HrbDecoder.cpp,
serves as a tool for decoding raw HRB data and extracting information about events and hits. It
provides methods for reading, checking and printing all header information, as well as the event data.
At the construction of an object of this class, a number of files is opened, using the STL ifstream class
(one file per one HRB board / detector plane). The readout methods of this class read subsequent
words of a chosen file. The user has to know the structure of the file (see Section 2) and understand
the location of the readout pointer in order to control what information is read. The most important
method of this class is ReadHits, which reads all the event data (Ns 128-bit words) and retrieves
the hit information, returning it as a list of 3-element vectors including the plane number, the time
sample number and the channel (wire) number. All members and methods are briefly described
in Appendix A.

5.2. Class HrbEvent

The class HrbEvent, defined in the file HrbEvent.h and implemented in the file HrbEvent.cpp, stores
all information relevant to a single event. At the construction of an object of this class, track
reconstruction is performed, which is described in details in Section 6.4. If the reconstruction succeeds,
the method HrbEvent::IsGoodEvent() returns kTRUE and all the track parameters can be retrieved
using dedicated methods. All members and methods are briefly described in Appendix B.

5.3. Executable program runHrbDecoder

The executable program implemented in the file runHrbDecoder.cpp is an easy-to-use application
allowing to obtain full information about events and particle tracks, having only raw data files as an
input. Moreover it enables the user to obtain event displays or to print any relevant information to the
standard output. Six raw datafiles should be provided as an input in the command line arguments, and
the rest is fully automatised. Some flags may be changed in the source code, controlling the behaviour
of the program, as described in Section 6.1. Also commenting/uncommenting certain parts of code
may become useful in its usage.

5.4. EventDisplay

The file EventDisplay.h provides several functions allowing to draw an event display. The file is
included in the source of runHrbDecoder. In order to generate an event display, it is sufficient to call
the function EventDisplay(HrbEvent*). It will generate a PDF file eventDisplay.pdf in the current
directory containing four projections of the detector – ZX, ZY1, ZY2, YX – with the hits and the
track and pause the program execution. Please note that the YX projection shows only the averaged
good hit location in each plane, while all the other projections show all good hits in green and all
bad hits in red. The functions provided in this header file may be also used to generate a ROOT file
containing all the event displays. A block of code doing this is provided in the file runHrbDecoder.cpp
and commented out. Please expect this procedure to take a significant amount of time and generate a
big ROOT file (a few hundred MegaBytes).
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6. The program operation step by step

6.1. Initialisation

At first, the printing level is set in the program. One can control the amount of information printed to
the standard output by changing the value of gErrorIgnoreLevel to kInfo, kWarning, kError or
any other value defined in TError.h. Next, one can set the flag displayEbyE. If its value is kTRUE,
the program draws all events one by one and pauses after each. If the flag displayOnlyGood is also set
to kTRUE, only good events will be drawn. The flag printRecoInfo may be set if one wants to print
a detailed information during event reconstruction even if gErrorIgnoreLevel is high. Afterwards,
the program checks whether the data types used to read 32- and 64-bit words from the files are indeed
32- and 64-bit sized.

After this first setup, an array of filenames is created from command line arguments and used to
initialise a HrbDecoder object. After that, plane numbers and names have to be assigned to serial
numbers of the HRB boards. It is important to fill the ID and name vectors in the order from the top
to bottom plane, as the vector index is then used as the plane number.

In the next step, two ROOT trees are created – one which will be used to sort the events and second
which will store information of all good events and will be written to the output file.

6.2. Data readout

The data readout is performed in a while-loop, which ends when the readout pointer in any of the
data files encounters a problem or the end of the file, or if a bad Sync word1 is read. Each turn of
the loop reads one event from each plane. In a perfect case, all data from HRB boards should be
well synchronised and the same event should be read from all planes. However, the data used as
input to this program, was sent from the HRBs via the TCP/IP protocol and might have lost the
synchronisation. Due to that fact, an event sorting procedure is applied, which is described in the next
section. In order to read one event from each file, a for-loop is performed over the files. All subsequent
words of the data frame are read from a file and printed, if the printing level is set to kInfo or lower.
The event timestamp and a list of hits from a single plane are written to the sorting tree (for each
plane separately).

6.3. Event sorting

After the data readout, the sorting tree contains about Nplanes ·Nevents entries. Each entry contains
a timestamp and a list of hits recorded in one plane at this time. The entries are sorted by timestamp,
and hit lists corresponding to one timestamp are merged into one list, which is used as an input to the
HrbEvent object constructor. Every new event is added to an array of events (HrbEvent objects).

1 Sync word is the first word in each data frame, which is supposed to be “*P”. For details, see http://afi.jinr.ru/
M-Link%20Data%20Layer.
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6.4. Event reconstruction

The event reconstruction is performed in the constructor of an HrbEvent object. At first, the raw hit
list provided as an input is sorted by plane numbes using the SortHits() method. This procedure is
not necessary in the current implementation of the reconstruction, but it may become useful in case of
any modifications. Hits of a single plane in a single event are ordered by the time sample without any
need of sorting, as they are sent by the HRB in a single data frame.

In the first step of event reconstruction, all hits are marked as good or bad hits. This is done for each
plane separately. The first (in time) hit in a plane is always marked as good. Subsequent hits are
good only if the time difference with respect to the first hit equals two samples (2 ·∆t) or less. This
procedure rejects problematic hits which are seen in the data, emerging in the same or neighbouring
wire as the first hit, but after a relatively long time (e.g. five samples, which corresponds to 40 ns in
case of ∆t = 8 ns). All good hits are stored in a new container (a vector of vectors). Having the good
hits array (wire numbers), hit coordinates along axes corresponding to each plane are calculated (x, y1
or y2), as described in Section 4. Also an average hit location in each plane is calculated, taking only
good hits into account.

Afterwards, each plane is marked as a good or bad plane. A plane is good only if the number of good
hits in it, Ngh, equals 4 or less. The difference between wire numbers associated with any two good
hits has to be equal to Ngh or less. This condition leaves a space for only one unfired wire in a hit
cluster and defines the maximal cluster size to five wires. At this stage, an event may be marked as
bad if the number of good planes, Ngp, is lower than 4 or if Ngp = 4, but two parallel planes are bad
(X1&X2 or YL1&YR1 or YL2&YR2). In both cases there is too little information for unequivocal
track determination. Thus, if the event is marked as bad at this stage, particle track reconstruction
will not be performed.

The reconstruction of a particle track in this program is defined as a least squares problem. A
4-argument function S(φ, θ, x0, y0), calculated as a sum of squared distances between the track and all
good hits in good planes, is minimised using a numerical minimisation algorithm. A track is assumed
to be a three-dimensional straight line defined by four parameters, as described in Section 4. In general,
S can be written as:

S(φ, θ, x0, y0) =
∑
ij

d 2
ij ,

where i ∈ {X1,YL1,YL2,X2,YR1,YR2} is the plane index, j = 1, 2, 3, ... is the hit index in a
particular plane and dij is a distance between the track and the j-th hit in the i-th plane. The
track-hit distances in a particular plane are calculated along the axis perpendicular to its wires (e.g.
along x for X1 or along y1 for YL1), at the same value of z. For example, if the first wire fired in the
YR1 plane (at z = −dz) was the 21st, then:

y1YL1,1 = (21− 46.75) · dw = −64.375 mm

dYL1,1 = |y1YL1,1 + 1
2(x0 − dz

px

pz
)−

√
3

2 (y0 − dz
py

pz
)|

= |y1YL1,1 + 1
2(x0 + dz cosφ| tan θ|)−

√
3

2 (y0 + dz sinφ| tan θ|)|
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The function S is minimised using the MIGRAD algorithm implemented in the Mi-
nuit2 minimiser framework implemented in ROOT. Its documentation may be found at
http://root.cern.ch/drupal/content/minuit2-manual-534. All parameters of the fitted
track may be obtained from the HrbEvent object using dedicated methods (see the reference in
Appendix B). Although a simple usage of the minimiser, as described above, gives quite satisfactory
results, several rare problems emerged during the project development. Some of them have been
identified and two additional procedures were applied – a choice of φ-angle range and a few additional
requirements for a good event.

During the work on this project, a simulation was developed, which was rather oversimplified but
helped to resolve all major problems with the implementation of reconstruction algorithm. It has also
shown, that in some cases the minimiser is not capable of finding a correct value of the φ-angle. In
order to minimise errors arising from this behaviour, dependence of hit locations on the true φ was
studied and an algorithm constraining the angle values was developed. Three auxiliary variables were
employed, defined as differences between average good hit locations in parallel planes:

∆x = 〈x〉good
X2 − 〈x〉good

X1

∆y1 = 〈y1〉good
YR1 − 〈y1〉good

YL1

∆y2 = 〈y2〉good
YR2 − 〈y2〉good

YL2

which are closely related to the ’true’ values calculated for a track:

(∆x)t = x(−3dz)− x(0) = 3dz| tan θ| cosφ

(∆y1)t = y1(−4dz)− y1(−dz) = 3dz| tan θ| cos(φ− 2π
3 )

(∆y2)t = y2(−5dz)− y2(−2dz) = 3dz| tan θ| cos(φ− π
3 )

Using the above relations, one can extract some information about φ knowing only the sign of ∆x,
∆y1 and ∆y2. This may be clearly seen in Figure 4.

ϕπ 2ππ2 3π20 π6 π3 2π3 5π6 7π6 4π3 5π3 11π6

ΔxΔy1Δy2
positivenegative

Figure 4: Sign of (∆x)t, (∆y1)t and (∆y2)t depending on the value of φ

The relations were used to determine a range of φ which was used as a constraint in the minimiser.
Each of the differences calculated from a true track can equal zero only in a few single points, i.e.
almost never. Nevertheless, a zero value happens relatively often for the differences calculated from
real hits due to discrete location of the wires, and the fact that particles usually cross the detector at
small value of θ. Because of that, all the cases with zeros had to be resolved separately and the ranges
were determined basing on the simulation. In such a case, the singular value of φ is smeared with a
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Gaussian-like distribution of a certain width σ due to the mentioned detector geometry effects. A
±2σ range was used to constrain the minimiser. All possible combinations an the corresponding φ
ranges are listed in Table 1. As it may be seen, there are two cases which are impossible to obtain
with true track calculation, but sometimes occur in the data: (+ +−) and (−−+). This may happen,
if a true ∆i (i ∈ {x, y1, y2}) is close to zero and in one plane, the wire closest to the track remains
unfired, while the next one is fired. If such a combination is found and one of ∆i values is close to zero
(∆i < dw), it is treated as zero and the range is then redetermined. However, impossible combinations
with high ∆i have been also spotted in the data. Such events are treated as bad and rejected, as
a track indeed cannot be fitted to the hits. In the (0 0 0) case, φ is undetermined and irrelevant, as θ = 0.

∆x ∆y1 ∆y2 φ

0 0 0 undetermined
0 0 + π/3± 0.6
0 0 − 4π/3± 0.6
0 + 0 2π/3± 0.6
0 + + π/2± 0.1
0 + − π ± 0.3
0 − 0 5π/3± 0.6
0 − + 0± 0.3
0 − − 3π/2± 0.1

∆x ∆y1 ∆y2 φ

+ 0 0 0± 0.6
+ 0 + π/6± 0.1
+ 0 − [3π/2; 11π/6]*
+ + 0 π/3± 0.6
+ + + [π/6; π/2]
+ + − impossible
+ − 0 11π/6± 0.1
+ − + [−π/6; π/6]
+ − − [3π/2; 11π/6]

∆x ∆y1 ∆y2 φ

− 0 0 π ± 0.6
− 0 + [π/2; 5π/6]*
− 0 − 7π/6± 0.1
− + 0 5π/6± 0.1
− + + [π/2; 5π/6]
− + − [5π/6; 7π/6]
− − 0 4π/3± 0.3
− − + impossible
− − − [7π/6; 3π/2]

Table 1: All 27 possible ∆x, ∆y1, ∆y2 sign combinations and the corresponding φ range in case of hits recorded
in six planes. One σ width is given, where a central value is noted. The minimiser constraint uses a
±2σ range instead. The combinations marked with * are extremely rare and the exact central value
could not have been determined. Only approximate range is used in these cases.

The whole above discussion applies to a case, when all three ∆i values are determined, i.e. there are
six good planes in the event. If one of the planes is marked as bad, only two of the ∆i values may be
calculated and one remains undetermined. All such cases have been collected in Table 2. Unlike in
six-plane events, a ±3σ range is used if the central value and the width are given.

In the events with only four good planes, φ cannot be constrained and the full range [0; 2π] is used
in the minimiser.
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∆x ∆y1 ∆y2 φ

x 0 0 [0; 2π]
x 0 + π/6± 0.15
x 0 − 7π/6± 0.15
x + 0 5π/6± 0.15
x + + [π/6; 5π/6]
x + − [5π/6; π/6]
x − 0 11π/6± 0.15
x − + [−π/6; π/6]
x − − [7π/6; π/6]

∆x ∆y1 ∆y2 φ

0 x 0 [0; 2π]
0 x + π/2± 0.15
0 x − 3π/2± 0.15
+ x 0 11π/6± 0.15
+ x + [−π/6; π/2]
+ x − [3π/2; 11π/6]
− x 0 5π/6± 0.15
− x + [π/2; 5π/3]
− x − [5π/3; 3π/2]

∆x ∆y1 ∆y2 φ

0 0 x [0; 2π]
0 + x π/2± 0.15
0 − x 3π/2± 0.15
+ 0 x π/6± 0.15
+ + x [π/6; π/2]
+ − x [−π/2; π/6]
− 0 x 7π/6± 0.15
− + x [π/2; 7π/6]
− − x [7π/6; 3π/2]

Table 2: All 27 possible ∆x, ∆y1, ∆y2 sign combinations and the corresponding φ range in case of hits recorded
in five planes. Missing (undetermined) ∆i value is denoted with x. One σ width is given, where a
central value is noted. The minimiser constraint uses a ±3σ range instead.

After determining the constrained φ range and running the minimiser algorithm, a set of additional
requirements is applied to the event. Another auxiliary variable is used at this stage, which is defined
as square root of S at the minimum divided by the number of good hits in good planes, Ngp

gh (i.e. the
number of hits contributing to S):

d ′rms =
√
S

Ngp
gh

= RMS(dij)√
Ngp

gh

It has been determined in the tested dataset, that a transition between well and badly reconstructed
events occurs between d ′rms = dw and d ′rms = 2dw.

At first, the minimiser status is checked. If the minimiser did not succeed2, but d ′rms < dw, the event is
still considered good. Otherwise, a minimisation is repeated with a looser strategy and precision. If
the second minimisation succeeds, the event is good. If it does not, again the d ′rms < dw requirement
decides whether to accept the event or not. If either the first or the second minimisation succeeds, but
d ′rms > 2dw, the event is rejected. A tighter cut is imposed on events, where one or more planes were
rejected despite having hits (i.e. rejected due to too many or too scattered hits). In this case, events
with d ′rms > dw are rejected.

An additional check is made on the x0 and y0 values. If they do not exceed the detector dimensions,
the event is accepted. In the dataset used in the project development, no event was rejected at this
stage. After fulfilling all the above requirements, the event is ultimately accepted and all the track
parameters are saved in the object member values. These can be later retrieved using dedicated ’getter’
methods.

2 A sucessful minimisation returns a status=0. For the possible errors and corresponding status values, please see the
Minuit2 documentation.
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6.5. Writing the output

All events, good and bad, may be displayed just after the reconstruction (in the same loop which
creates HrbEvent objects), if the displayEbyE flag is kTRUE and displayOnlyGood is kFALSE. The
event display will be written to the file eventDisplay.pdf in the current directory and the program
will be paused. After pressing Enter, next event will be reconstructed and displayed. If the flag
printRecoInfo is also kTRUE each HrbEvent constructor will print very detailed information about
the event to the standard output. It may be then redirected to a log file.

After the event reconstruction loop ends, another loop is initialised which goes through the events
array. In this loop, every good event information is saved to the ROOT tree (named HrbTree) which
will be written to the output file. If displayEbyE=kTRUE and displayOnlyGood=kTRUE, the good
events are displayed at this stage in the same way as described above. In the last step, the tree is
written to a file output.root in the current directory and the program ends.

An additional feature is available, which is commented out in the file runHrbDecoder.cpp. Uncom-
menting the large code block at the end of the file will result in writing all event displays to a separate
ROOT file. The procedure takes a significant amount of time (several minutes) and the resulting file is
large (a few hundred MegaBytes).

7. Usage

The program was developed and tested only in Linux (Mint 16, 64-bit), but it does not use any system-
or architecture-specific features and should be easily usable on other platforms. It depends only on the
STL and ROOT libraries, thus it is crucial to set up the latter properly. Especially, the dynamic linker
has to know the location of ROOT libraries, which is achieved by sourcing the script thisroot.sh
which is available in the ROOT installation directory, in the bin subdirectory.

The program can be easily compiled by just executing the command make in the application directory.
Then, it may be run with the command ./runHrbDecoder followed by six arguments being locations
of six input datafiles. In case of having a subdirectory data containing only six .dat files, one can type
./runHrbDecoder data/*.dat. Settings are changed by making changes in the source code, especially
by changing flags in runHrbDecoder.cpp. Typical combinations of the flags are:

Option Com. 1 Com. 2 Com. 3
gErrorIgnoreLevel kError kWarning kWarning
displayEbyE kFALSE kTRUE kFALSE
displayOnlyGood kFALSE kFALSE kFALSE
printRecoInfo kFALSE kTRUE kTRUE

In the first case, the program execution will be the fastest and only minimal information will be printed:
the number of entries in the sorting tree (i.e. number of one-plane events read from the data), the
total number of events and the number of good events. The second case is used to display event by
event along with the reconstruction information. It is advised to open the file eventDisplay.pdf in a
PDF reader which refreshes the view, when the file is updated (e.g. Evince), run the HrbDecoder in a
terminal window and just switch subsequent events by pressing Enter. The third flag combination
prevents drawing event displays and prints all the reconstruction information without pausing the
program execution. It is useful for writing a log file by redirecting the standard output.
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8. Results

The tested dataset contained 19551 one-plane events, which were combined into 3258 full events after
sorting. The reconstruction resulted in 2570 good events. Log information and event displays of the
rejected events show, that most of them contain multiple hit clusters arising clearly from two particles
crossing the detector. Some events were rejected due to having many hits spread around a big area or
due to having too little hits. Both situations may be related to noise effects (the former being a real
particle plus noise and the latter being just sheer noise). 198 events (6% of all events) were rejected
due to impossible ∆x∆y1∆y2 combination, which could not be corrected by treating one of ∆i as zero.
A reason for this behaviour has not yet been identified.

Figure 5 shows the collective results of event reconstruction in the dataset. The location of trigger
scintillators can be clearly seen in Figure 5a along with the location of light guide, which can also
sometimes trigger an event. The d ′rmsdistribution correctly peaks and low values and falls more or
less exponentially, reaching negligible values around dw = 2.5 mm. The angular distributions of the
tracks reflect the alignment of the two trigger scintillators. Despite relatively low statistics in this
dataset, as for testing purposes, the results appear satisfactory. However, some strong and apparently
statistics-independent non-linearities can be spotted in the obtained distributions (e.g. the peaks
at φ = 270◦ and φ = 330◦). It has not yet been resolved whether they are related to the detector
geometry or caused by features of the reconstruction algorithm.

Although the φ-range constraining procedure may seem unjustified at the first glance and it may be
accused of generating the non-linearities in the angular distributions, it is indeed crucial for a successful
track reconstruction. This is clearly proven in Figure 6, which presents the same distributions as
Figure 5, but obtained with φ ∈ [0; 2π] range used in the minimiser for all events. The vast majority
of events were reconstructed with θ = 0 and/or φ = 0, which is far from true values, and leads the d ′rms
distribution to smear and shift towards higher values.
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Figure 5: (a) Location of the (x0, y0) point in all good events of the tested dataset. (b, c, d) Distributions of
d ′

rms, φ and θ in these events.
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Figure 6: Analogous plots as presented in Figure 5, but after reconstruction without constraining the φ range.
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9. Example event displays

On the next few pages, displays of typical good and bad events are presented along with the information
printed to the standard output at the reconstruction.

event 21. A nearly-perfect event, with exactly one hit in each plane and a well-fitted track.

Info : HrbEvent::HrbEvent() : In Event 21 : Plane 0 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 21 : Plane 1 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 21 : Plane 2 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 21 : Plane 3 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 21 : Plane 4 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 21 : Plane 5 has 1 good hit

HIT LIST:
[GOOD]
plane 0 hit channels: 55
plane 0 hit samples: 20

[GOOD]
plane 1 hit channels: 67
plane 1 hit samples: 21

[GOOD]
plane 2 hit channels: 60
plane 2 hit samples: 25

[GOOD]
plane 3 hit channels: 41
plane 3 hit samples: 26

[GOOD]
plane 4 hit channels: 28
plane 4 hit samples: 27

[GOOD]
plane 5 hit channels: 35
plane 5 hit samples: 26

x [mm]

-150 -100 -50 0 50 100 150

z 
[m

m
]

-100

-80

-60

-40

-20

0

20

40

 [mm]
1

y

-150 -100 -50 0 50 100 150

z 
[m

m
]

-100

-80

-60

-40

-20

0

20

40

 [mm]
2

y

-150 -100 -50 0 50 100 150

z 
[m

m
]

-100

-80

-60

-40

-20

0

20

40

Page 15



R. Bielski HrbDecoder documentation
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Example YX projection of a good event. Green dots represent averaged location of a good hit in each plane.
The dotted grey lines represent averaged locations of good hit wires in the top three planes, whereas the dashed
grey lines correspond to the three bottom planes. The fitted track is drawn in blue. The event 21, which is
shown in this figure, has only one hit in each plane, thus the hit locations are exact.
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event 54. A typical event with some good and some bad hits, six good planes and a well-fitted track.
Bad hits are marked with x in the log and with red dots in the display.

Info : HrbEvent::HrbEvent() : In Event 54 : Plane 0 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 54 : Plane 1 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 54 : Plane 2 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 54 : Plane 3 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 54 : Plane 4 has 2 good hits
Info : HrbEvent::HrbEvent() : In Event 54 : Plane 5 has 2 good hits

HIT LIST:
[GOOD]
plane 0 hit channels: 71
plane 0 hit samples: 9

[GOOD]
plane 1 hit channels: 79
plane 1 hit samples: 10

[GOOD]
plane 2 hit channels: 57
plane 2 hit samples: 11

[GOOD]
plane 3 hit channels: 28 27x 28x
plane 3 hit samples: 16 19x 22x

[GOOD]
plane 4 hit channels: 17 18 16x
plane 4 hit samples: 15 17 21x

[GOOD]
plane 5 hit channels: 39 38
plane 5 hit samples: 19 21
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event 156. An event with clear signatures of two particles crossing the detector at the same time.

Warning : HrbEvent::HrbEvent() : In Event 156 : Bad plane 0 - two hits too far from each other.
Warning : HrbEvent::HrbEvent() : In Event 156 : Bad plane 1 - two hits too far from each other.
Warning : HrbEvent::HrbEvent() : In Event 156 : Bad plane 2 - two hits too far from each other.
Warning : HrbEvent::HrbEvent() : In Event 156 : Bad plane 3 - two hits too far from each other.
Info : HrbEvent::HrbEvent() : In Event 156 : Plane 4 has 2 good hits
Warning : HrbEvent::HrbEvent() : In Event 156 : Bad plane 5 - two hits too far from each other.
Warning : HrbEvent::HrbEvent() : Bad Event 156. Not enough good planes (1).

HIT LIST:
[BAD]
plane 0 hit channels: 46 19 18x
plane 0 hit samples: 15 17 21x

[BAD]
plane 1 hit channels: 53 69 54x
plane 1 hit samples: 16 16 19x

[BAD]
plane 2 hit channels: 80 70 70x
plane 2 hit samples: 16 18 22x

[BAD]
plane 3 hit channels: 70 49 69x
plane 3 hit samples: 22 24 29x

[GOOD]
plane 4 hit channels: 35 36 26x
plane 4 hit samples: 22 24 26x

[BAD]
plane 5 hit channels: 16 24
plane 5 hit samples: 22 23
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event 195. An event with an impossible combination of ∆i values. A three-dimensional straight
line cannot be fitted well to these hits.

Info : HrbEvent::HrbEvent() : In Event 195 : Plane 0 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 195 : Plane 1 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 195 : Plane 2 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 195 : Plane 3 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 195 : Plane 4 has 1 good hit
Info : HrbEvent::HrbEvent() : In Event 195 : Plane 5 has 1 good hit
Warning : HrbEvent::PhiRange() : Impossible combination --+
Warning : HrbEvent::HrbEvent() : Bad Event 195. Wrong result of PhiRange().

HIT LIST:
[GOOD]
plane 0 hit channels: 56 55x
plane 0 hit samples: 10 17x

[GOOD]
plane 1 hit channels: 70 71x
plane 1 hit samples: 11 17x

[GOOD]
plane 2 hit channels: 58 59x 57x
plane 2 hit samples: 12 15x 17x

[GOOD]
plane 3 hit channels: 35
plane 3 hit samples: 18

[GOOD]
plane 4 hit channels: 28
plane 4 hit samples: 17

[GOOD]
plane 5 hit channels: 30 31x
plane 5 hit samples: 18 24x
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Appendix A. HrbDecoder class reference

Public methods

HrbDecoder ()

Empty constructor (needed for ROOT ClassDef compatibility)

HrbDecoder (Int_t nfiles, char** filenames)

Standard constructor
nfiles - number of input files
filenames - array of file names, having size of nfiles

∼HrbDecoder ()

Default destructor.

Bool_t FilesGood ()

Returns true if all input file streams are good for readout (no eofbit, failbit or badbit)

UInt_t ReadWord32 (UInt_t ifile)

Reads a 32-bit word from a file with index ifile

ULong64_t ReadWord64 (UInt_t ifile)

Reads a 64-bit word from a file with index ifile

bitset<128> ReadWord128 (UInt_t ifile)

Reads a 128-bit word from a file with index ifile

void CheckSyncType (UInt_t data)

Checks and prints the Sync word and the frame type. If bad Sync word encountered, it sets m_badsync = kTRUE.
The argument data is a 32-bit word read from a file.

void CheckLengthSeq (UInt_t data)

Prints the frame length and sequence number (counter). The argument data is a 32-bit word read from a file.

void CheckDstSrc (UInt_t data)

Prints the destination and source address. The argument data is a 32-bit word read from a file.

void CheckDataType (UInt_t data)

Prints the data type, flags and fragment lenght. The argument data is a 32-bit word read from a file.

void CheckFragmentID (UInt_t data)

Prints the fragment ID and offset. The argument data is a 32-bit word read from a file.
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void CheckCRC (UInt_t data)

Prints the CRC (cyclic redundancy check). The argument data is a 32-bit word read from a file.

Int_t GetPlaneID (UInt_t data)

Checks the device serial number and returns the corresponding plane number. The argument data is a 32-bit word
read from a file.

Int_t GetEventNumber (UInt_t data)

Prints the channel number (trigger position) and the event number, and returns the latter. The argument data
is a 32-bit word read from a file.

void CheckTimestamp (ULong64_t data)

Prints the timestamp. The argument data is a 64-bit word read from a file.

void SetIDmap (vector<UInt_t> devID, vector<TString> planeName)

Sets the map of plane numbers vs device IDs, and the plane names array

list<vector<Int_t> > ReadHits (UInt_t ifile, Int_t iplane)

Reads nsample of 128-bit words containg hit information and creates a list of (plane, sample, channel) hit vectors
ifile - the index of file to be read
iplane - the corresponding plane index

Int_t GetNfiles ()

Returns the number of data files

TString GetFilename (UInt_t ifile)

Returns the name of i-th file

Bool_t BadSync ()

Returns true if bad Sync word was encountered

Private members

Int_t m_nfiles Number of input files
vector<TString> m_filename Input file names array

vector<ifstream*> m_filestr Input file streams array
Bool_t m_badsync True if bad sync word encountered

map<UInt_t,UInt_t> m_devIDmap Map of the device IDs and the corresponding plane numbers
vector<TString> m_planeName Array of plane names. The name index corresponds to the plane number

Int_t m_nsamples Number of samples in a single frame
Int_t m_vb Verbosity level, as in TError.h: kInfo, kWarning, kError, etc.
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Appendix B. HrbEvent class reference

Public methods

HrbEvent ()

Empty constructor

HrbEvent (Long64_t timestamp, UInt_t evNumber, list<vector<Int_t> > rawHitsArray, Int_t
nplanes)

Standard constructor
timestamp - event timestamp (number of miliseconds since Unix ’epoch’)
evNumber - the event number
rawHitsArray - a list of hit vectors (plane, sample, channel) - output from HrbDecoder::ReadHits()
nplanes - number of planes of the detector

∼HrbEvent ()

Default destructor

void Print ()

Prints the event information (track and fit parameters)

TString GetTimeString ()

Returns a string representing time of the event in the format yyyy-mm-dd HH:MM:SS

Bool_t IsGoodEvent ()

Returns true if the event has exactly one hit in each plane

Double_t GetX (Double_t z)

Returns a value of the x-coordinate of a point on the track, at a given value of the z-coordinate

Double_t GetY (Double_t z)

Returns a value of the y-coordinate of a point on the track, at a given value of the z-coordinate

Double_t GetY1 (Double_t z)

Returns a value of the y1-coordinate of a point on the track, at a given value of the z-coordinate

Double_t GetY2 (Double_t z)

Returns a value of the y2-coordinate of a point on the track, at a given value of the z-coordinate

Double_t GetUncX (Double_t z)

Returns the uncertainty of x(z)

Double_t GetUncY (Double_t z)

Returns the uncertainty of y(z)
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Double_t GetUncY1 (Double_t z)

Returns the uncertainty of y1(z)

Double_t GetUncY2 (Double_t z)

Returns the uncertainty of y2(z)

Double_t GetPx ()

Returns the x-coordinate of the track momentum (px)

Double_t GetPy ()

Returns the y-coordinate of the track momentum (py)

Double_t GetPz ()

Returns the z-coordinate of the track momentum (pz)

Double_t GetPhi ()

Returns the azimuthal angle of the track (phi)

Double_t GetTheta ()

Returns the polar angle of the track (theta)

Double_t GetUncPx ()

Returns the uncertainty of the x-coordinate of the track momentum (px)

Double_t GetUncPy ()

Returns the uncertainty of the y-coordinate of the track momentum (py)

Double_t GetUncPz ()

Returns the uncertainty of the z-coordinate of the track momentum (pz)

Double_t GetUncPh ()

Returns the uncertainty of the azimuthal angle of the track (phi)

Double_t GetUncTheta ()

Returns the uncertainty of the polar angle of the track (theta)

Double_t GetAvDhit (Int_t iplane)

Returns the hit distance in a given plane (averaged number of channel * distance between wires + offset)

Double_t GetSumOfSquares ()

Returns the sum of squared track-hit distances
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UInt_t GetNhits ()

Returns the total number of hits

UInt_t GetNhitsGood ()

Returns the number of good hits in good planes (all which are used in track fitting)

Double_t GetHitPlanes ()

Returns the number of planes in which hits were recorded

Double_t GetHitPlanesGood ()

Returns the number of planes used in track fitting

void SetPlaneNames (vector<TString> planeName)

Sets the vector of plane names

Long64_t GetTimestamp ()

Returns the event timestamp

UInt_t GetEventNumber ()

Returns the event number

list<vector<Int_t> > GetRawHits ()

Returns the raw hit list - a list of 3-element vectors (plane, sample, channel)

vector<vector<Bool_t> > GetRawGoodHitFlag ()

Returns the nplanes-element vector of hit vectors containing good hit flags

vector<vector<Int_t> > GetRawChannels ()

Returns the nplanes-element vector of hit vectors containing channel numbers

Private methods

void SortHits ()

Sorts the hits by plane number, sample number, channel number. The implementation of this function uses the function
HitsComparison(vector<Int_t>,vector<Int_t>) defined locally in the file HrbEvent.cpp.

vector<Double_t> PhiRange (Double_t dx, Double_t dy1, Double_t dy2)

Returns a two-element vector with values defining the range of possible phi angle values with given deltaX, deltaY1,
deltaY2

vector<Double_t> PhiRange5 (Double_t dx, Double_t dy1, Double_t dy2)

Same as PhiRange() but for the case of 5 planes with recorded hits
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double SumOfSquares (const double* vv)

The sum of squared distances function, for the least squares method

Private members

Long64_t m_timestamp Event timestamp
UInt_t m_evNumber Event number

list<vector<Int_t> > m_hitsArrayRaw List of 3-element vectors (plane,sample,channel)
vector<vector<Int_t> > m_ichanRaw nplanes-element vector of hit vectors (channel numbers)
vector<vector<Int_t> > m_sampleRaw nplanes-element vector of hit vectors (sample numbers)

vector<vector<Bool_t> > m_goodHit nplanes-element vector of hit vectors (good hit flag)
vector<vector<Double_t> > m_dhit nplanes-element vector of hit vectors (hit in-plane coordinates)

Int_t m_vb Verbosity level, as in TError.h: kInfo, kWarning, kError, etc.
Bool_t m_sorted True if raw hit list, m_hitsArrayRaw, is sorted
Int_t m_nplanes Total number of planes

vector<TString> m_planeName Vector of plane names
Double_t* m_avDhit Vector of averaged hit distances x1, yl1, yl2, x2, yr1, yr2
Double_t m_dw The distance between wires (horizontal)
Double_t m_hw Width of one plane (95.5 · dw)
Double_t m_dz The distance between planes (vertical)
Double_t m_px x-coordinate of the track momentum vector (px)
Double_t m_py y-coordinate of the track momentum vector (py)
Double_t m_pz z-coordinate of the track momentum vector (pz)
Double_t m_x0 x-coordinate of track at z=0 (x0)
Double_t m_y0 y-coordinate of track at z=0 (y0)
Double_t m_phi Azimuthal angle φ (in the xy-plane)
Double_t m_theta Polar angle θ (in the rz-plane)
Double_t m_uncPx Uncertainty of px

Double_t m_uncPy Uncertainty of py

Double_t m_uncPz Uncertainty of pz

Double_t m_uncX0 Uncertainty of x0

Double_t m_uncY0 Uncertainty of y0

Double_t m_uncPhi Uncertainty of φ
Double_t m_uncTheta Uncertainty of θ

Bool_t m_isGoodEvent True if requirements of a good event are met
Double_t m_sumOfSquares Sum of squared track-hit distances

Int_t m_nhits Number of hits in the event
Int_t m_nhitsGood Number of hits in good planes
Int_t m_hitPlanes Number of planes in which hits were recorded
Int_t m_hitPlanesGood Number of planes with good hits

Bool_t* m_goodPlane Vector of boolean values indicating good/bad planes
Double_t m_bigDist Distance much larger than detector dimensions

– this number is used in case of no-hit planes
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