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Abstract

In this report the results of studying uniformly isorotating radially symmetric
CP

2 solutions in (2+1) dimensions with classical Lagrangian are presented and
discussed. The region of permitted frequences where the solitons are stable is found
both analytically and numerically. Special attention is paid to relations between
Noether charges and angular momenta of the solutions. The several cases of �elds
with di�erent n1, n2 quantum numbers were analyzed from the point of view of
their dynamical characteristics.

1 Theoretical study

Generally speaking the CP
n symmetry [1] implies that the Lagrangian of the

model possesses the Lie group of symmetry isomorphic to n-dimensional complex
projective plane, which is a homogeneous space. The group can be obtained by
regarding this space as a factor-space

CPn = Cn+1/C∗ (1)

where operation is a product * of complex vector Cn+1 3 ~z = (z1, . . . , zn+1),
zj ∈ C, j = 1, n− 1 and complex number, de�ning equivalence classes ~z ∼ ξ · ~z,
where ξ ∈ C \ {0}. Considering an odd-dimensional sphere equation ~z †~z = 1 and
decomposing ξ into trigonometric form of complex number, one can �nd that if
n=2

CP2 =
S5

U (1)
=

SU (3)

SU (2)× U (1)
(2)

There is a number of peer ways to formulate CP
2 model [1], [4]. The �rst one

that we need is description via 8-component color �eld n, which [5] either can
be decomposed in Gell-Mann matrices basis with real parameters n = naλa,
a = 1, 8; or regarded as a matrix product n = U †λ8U , where U ∈ SU (3). Then
the Lagrangian takes form

L =
1

4
· Tr (∂µn ∂

µn)− V (3)

Hereinafter greek indices µ = 0, 2 and metric tensor is taken as standard
Minkowski metric, i.e. gµν = ηµν = diag(−1, +1, +1). The (3) is invariant under
global transformations n→ W †nW , where W ∈ U (3), and also has an invariant
subgroup U → H · U , where SU (2)× U (1) ⊃ H = {h : [h, λ8] = 0}.
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The second way of obtaining the Lagrangian is by using the homogeneous
coordinates Z on CP

2, which will be applied further. The components of the
color �eld n can be introduced as na = Z †λaZ, thereby the Lagrangian (3) takes
a new form

L = 2 · (DµZ)†DµZ − V (4)

where DµZ = ∂µZ −
(
Z†∂µZ

)
·Z and Z is a complex unimodular vector with

arbitrary phase. The potential [4] can be chosen as

V = µ2 ·
((
n3
)2

+
(
n8
)2 − 4

3

)
(5)

As soon as we are considering monosolitonic solutions with axial symmetry, we
can impose an ansatz [5] of the form

Z =
(
cos F (r) , sin F (r) · cosG (r) · eiϕ, sin F (r) · sinG (r) · eiψ

)
(6)

where ϕ = ω1t+ n1ϑ, ψ = ω2t+ n2ϑ, {r, ϑ} are polar coordinates on physical
space R2; ω1, ω2 are real numbers and n1, n2 are positive integers. The boundary
conditions imposed on pro�le functions are:

F (0) = 0, F (∞) =
π

2

G (0) =
π

2
, G (∞) = 0

(7)

In terms of (6) the potential takes form

V =
1

4
µ2 sin2 F ·

(
2 sin2 F cos 4G− 7 cos 2F − 9

)
(8)

Where µ2 is mass parameter, which was set to 1 in our research. According to
(7) potential vanishes at spatial in�nity lim

r→∞
V = 0.

Energy density component of energy-momentum tensor [2]

T00 = (D0Z)† (D0Z) + (DjZ)† (DjZ) + V (9)

with regard to po�le functions parametrization can be written as
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T00 = E = F ′2 + sin2 FG′2

+
1

16r2
sin2 F · [2

((
n21 − n22

)
+ r2

(
ω2
1 − ω2

2

))
·
(
4cos2F cos2G− sin2F cos4G

)
+
((
n21 + n22

)
+ r2

(
ω2
1 + ω2

2

))
· (3cos2F + 5)

− 2sin2F ·
(
n1n2 + r2ω1ω2

)
]

(10)
Angular momentum density of solitonic con�guration can also be obtained

from E-M tensor as a time-angular component in polar coordinates [6]

T0ϕ =
∂L

∂ (∂0Z)
∂ϕZ + ∂ϕZ

† ∂L
∂ (∂0Z†)

(11)

Concerning the (6), one can get

T0ϕ = 2ω1 sin2 F
(
n1 cos2G

(
1− sin2 F cos2G

)
− n2 sin2 F sin2G cos2G

)
+ 2ω2 sin2 F

(
n2 sin2G

(
1− sin2 F sin2G

)
− n1 sin2 F sin2G cos2G

) (12)

This expression can be separated into two components by grouping multipliers
near angular frequencies. This multipliers can be regarded as corresponding inertia
momenta density of solution.

Due to the existance of symmetry (2), the model possesses a conserving Noether
current [2]

jµ =
i

2

(
∂L

∂ (∂µZ)
ΛZ − Z†Λ ∂L

∂ (∂µZ†)

)
(13)

Where Λ is linear combination of Cartan subalgebra generators. In this paper
it is taken as Λ =

(
λ3 +

√
3λ8
)
/2. Imposing the radial symmetry ansatz, one can

�nd the time component

j0 = Q =
1

16
ω1 sin2 F

(
−8 cos2 F cos 2G− 2 sin2 F cos 4G− 5 cos 2F − 3

)
+

1

16
ω2 sin2 F

(
16 cos2 F cos 2G+ 2 sin2 F cos 4G− 7 cos 2F − 9

) (14)

Here we can observe the same situation as with angular momentum, namely
the charge can be divided into two terms with multipliers of respective angular
frequencies.

The �eld equations of the model can be obtained by standard procedure of
action, corresponding to (4) minimization. Then the Euler-Lagrange equations
are
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∂r
∂

∂F ′r

(√
−gL

)
− ∂ (

√
−gL)

∂F
= 0; ∂r

∂

∂G′r

(√
−gL

)
− ∂ (

√
−gL)

∂G
= 0 (15)

Where g = det(gµν (r)) and prime stands for derivative. After the simpli�cation
procedure the asymptotical behaviour of the solutions can be studied. To that end
it is necessary to introduce a change of variables

F (r)→ π

2
− f (r) ; G (r)→ g (r) (16)

Where the new �elds satisfy the condition of vanishing at spatial in�nity, i.e.

lim
r→∞

f (r) = 0; lim
r→∞

g (r) = 0 (17)

Then full linearization of the equations (15) should be carried out, it means
that all the functions should be changed with the �rst terms of their Taylor series
with respect to the conditions (17). The form of the equations obtained is:

f′′ +
f′

r
−
(
2µ2 − ω2

1

)
f = 0; g′′ +

g′

r
−
(

2µ2 − (ω1 − ω2)
2
)
g = 0 (18)

Or in operator formalism:[
∆r −

(
2µ2 − ω2

1

)]
f = 0;

[
∆r −

(
2µ2 − (ω1 − ω2)

2
)]

g = 0 (19)

Where ∆r is radial component of Laplace operator in polar coordinates. One
can notice that these are Klein-Gordon-Fock equations for radially symmetrical
massive scalar �elds. For the solutions to be localized [3], the mass parameters
must both be positive, therefore the system of inequalities for angular frequences
takes place {

ω1 ≤
√

2µ

ω2 ≤
√

2µ+ ω1
(20)

This system imposes a trapezoid area of stable localized solitonic con�gurations.
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2 Methods and results

The main aim of the research was to construct a method of getting pro�le functions
F and G with the set of parameters ω1, ω2, n1, n2 and then calculate the integrals of
dynamical characteristics corresponding to each of the pairs of F, G. For the sake
of �nitness of the numerical integral sum the coordinate r was compacti�ed r →
r/ (1 + r) ∈ [0, 1) to the unit segment. The conjugate gradient method was used
for the action with Lagrangian (3) minimization. Derivatives were approximated
by �nite-di�erence scheme with number of grid nodes n = 90 on a [0, 1) unit
segment. Mesh 50× 100 was chosen on the angular frequency domain.

2.1 Pro�le functions

Two samples of pro�le functions obtained by �nite-di�erence scheme Lagrangian
minimization (see Figure 1.1)

Figure 1.1: Pro�le functions
Left plot: ω1 = 1.0, ω2 = 2.0, n1 = 3, n2 = 4; Right plot: ω1 = 5.0, ω2 = 6.0, n1 = 1, n2 = 2
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2.2 Solutions stability

It must be mentioned, that correctness of constraints (20) was a�rmed by numerical
study. Let's consider a full domain frequency space (see Figure 2.1, left). The
regions of numerical convergence of action belong to the colored gradient part of
the plot. The regions of action divergence, in turn, are depicted as grey regions.
As one can notice, both of the regions are continuos and have distinct border,
which has a form of a trapezoid (20). Thus, hereinafter all the plots of dynamical
characteristics will be reduced to stable region (see Figure 2.1, right)

Figure 2.1: Domain of action convergence
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2.3 Dynamical characteristics plots

Figure 3.1: n1 = 2, n2 = 2
Total Noether charge (top left plot), total angular momentum (top right plot) and energy
(bottom plot)
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Figure 3.2:n1 = 1, n2 = 4
Total Noether charge (top left plot), total angular momentum (top right plot) and energy
(bottom plot)
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Figure 3.3: n1 = 3, n2 = 1
Total Noether charge (top left plot), total angular momentum (top right plot) and energy
(bottom plot)
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3 Conclusion

In this research the isorotation properties (i.e. internal rotations) ofCP
2 monosolitonic

solutions in (2+1) dimensions with classical Lagrangian were investigated. At
�rst the theoretical outline of the model was carried out, the suitable ansatz was
chosen. Then the explicit expressions for the dynamical characteristics were found.
The obtained plots of action and energy clearly show the stability domain, this
fact approves the theoretical results. In our next research the problems of angular
momenta and charges relations will be taken up for more systematic investigation.
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